- #1
Elj
- 5
- 1
- Homework Statement
- Two non-identical spherical drops of mercury one with charge of 30.0 nC and a potential
of 500.0 V and the other one with charge of 40.0 nC and potential of 700.0 Vat the
surface. The two drops merge to form a single drop. What is the potential at the surface
of the new drop?
- Relevant Equations
- V=kq/r v=4/3pir^3
I originally thought that this problem was simple, and it still seems like it is, but there are conflicting solutions and I don't know which is correct. So I first solved for R1 and R2 using V=kQ/r where R1 is 0.514 and R2 is 0.54. My original thought was volume is conserved so V1 + V2 = V3 and rearranging to get the radius then R3 = (R2^3 + R1^3)^3 = 0.664. Then the charge is conserved so Q1 + Q2 = Q3 so Q3 = 70nc and then plugging it back in to get the potential V=kQ3/R3, V = 948V, but a classmate of mine seemed to get 614V.
Sorry about the format I don't know how to write in Laytex.
Sorry about the format I don't know how to write in Laytex.