Electron and hole concentration

AI Thread Summary
The discussion focuses on calculating electron and hole concentrations in a non-degenerate semiconductor at 300 K, given an intrinsic carrier concentration of 2 x 10^13 cm^-3 and effective densities of states of 10^19 cm^-3. For part one, it is confirmed that in an intrinsic semiconductor, the electron concentration (n) equals the hole concentration (p), both equaling the intrinsic carrier concentration. In part two, the calculation for the Fermi level position relative to the conduction band is discussed, with the assumption that n equals n_i being correct for intrinsic materials. The responses clarify that the calculations are valid under the intrinsic semiconductor assumption. The thread emphasizes the importance of confirming the intrinsic nature of the sample for accurate results.
NerdyGuy
Messages
1
Reaction score
1
Homework Statement
Physics, Semiconductor, carrier concentration
1. part unsolved
2. part solved, but not sure
Relevant Equations
##n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right)##
##n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right)##
I can't solve the following exercise:

Assume for a certain non-degenerate semiconductor sampe at T = 300 K an intrinsic carrier concentration ##n_i = 2 \cdot 10^{13} \frac{1}{cm^3}## and the band effective densities of states ##N_C = N_V = 10^{19} \frac{1}{cm^3}##.
1. Determine the electron and hole concentrations n and p.
2. Find the position of the Fermi level in respect to the conduction band.

For part 1 I tried:
$$n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right) \\
= ... \approx 0.68 eV$$
But here I'm not sure if this is necessary and how to continue. Can anybody please help me?

My calculation for 2 is:
$$n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right) $$
$$\Leftrightarrow E_C - E_F = k_B T \ln \left( \frac{N_C}{n} \right) $$
$$\Leftrightarrow E_C - E_F = 1,38 \cdot 10^{-23} \frac{J}{K} 300 K \ln \left( \frac{10^{19} \frac{1}{cm^3}}{2 \cdot 10^{13} \frac{1}{cm^3}} \right) $$
$$\approx 0.34 eV$$

Can anyone confirm this? Is the last step correct, where I set ##n = n_i = 2 \cdot 10^{13} \frac{1}{cm^3}##?

Best regards

NerdyGuy
 
Last edited by a moderator:
Physics news on Phys.org
First, welcome to PF!

For part #1, you did not state what values ##n## and ##p## are. Is this an intrinsic sample? If it is you can answer part #1 trivially. For part #2, you are correct only if this is an intrinsic semiconductor.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top