- #1
Juli
- 21
- 5
- Homework Statement
- Suppose an electron were bound to a proton not by the electrical force, but by gravity. What would be the radius and energy of Bohr's first orbit?
- Relevant Equations
- ##F_G = \frac{G\cdot m_1 m_2}{r^2}##
##F_C = m_e r \omega^2##
Hello everyone,
I have the problem above. I chose to put ##F_G = F_Z## to solve it and end up with a radius ##r = 1.04\cdot 10^{-7}##m.
Solutions on the internet choose to put the gravitational force equal to the centrifugal force and obviously end up with a completely different solution. I can kind of understand both ways, but for me my way is the solution to the above statement, and to put ##F_G## equal to the coulomb force would just show how big the radius has to be to equal the Coulomb force. Which of course is valid because this is how the electron is bound to the proton. But in the problem we think about, how it is, when the Coulomb force is not there.
Which way would you think is correct to solve what is asked?
I have the problem above. I chose to put ##F_G = F_Z## to solve it and end up with a radius ##r = 1.04\cdot 10^{-7}##m.
Solutions on the internet choose to put the gravitational force equal to the centrifugal force and obviously end up with a completely different solution. I can kind of understand both ways, but for me my way is the solution to the above statement, and to put ##F_G## equal to the coulomb force would just show how big the radius has to be to equal the Coulomb force. Which of course is valid because this is how the electron is bound to the proton. But in the problem we think about, how it is, when the Coulomb force is not there.
Which way would you think is correct to solve what is asked?