- #1
fyzikapan
- 12
- 0
Homework Statement
An electron is an eigenstate of sz at time t = 0 (spin up). It is in a magnetic field [tex]\vec B = (B \sin \theta, 0,B\cos\theta)[/tex]. Find the probability of finding the electron with spin down at time t.
Homework Equations
[tex]
U(t) = \exp \left( -i \mathcal{H} t/\hbar\right)\\\\
P(t) = \left| \left \langle \downarrow | \chi(t) \right \rangle \right|
[/tex]
The Attempt at a Solution
[tex]
\begin{align*}
U(t) &= \exp \left( -i \mathcal{H} t/\hbar\right)\\
&= \exp \left( -i \frac{et}{mc\hbar} \vec S \cdot \vec B\right)\\
&= \exp \left( -i \frac{\omega_0 t}{2} \left(\sigma_x \sin \theta + \sigma_z \cos \theta\right)\right)\\
&= \exp \left(-i \frac{\omega_0 t}{2} \left[ \begin{array}{cc}\cos \theta & \sin \theta \\
\sin \theta & \cos \theta \end{array}\right]\right)\\
&= \left( \begin{array}{cc}
\exp (- i \frac{\omega_0 t}{2} \cos \theta) & \exp (- i \frac{\omega_0 t}{2} \sin \theta)\\
\exp (- i \frac{\omega_0 t}{2} \sin \theta) & \exp ( i \frac{\omega_0 t}{2} \cos \theta)
\end{array}\right)
\end{align*}[/tex]
Then at time t,
[tex]
\begin{align*}
\chi(t) &= U(t) \left| \chi(0) \right \rangle\\
&= \left( \begin{array}{cc}
\exp (- i \frac{\omega_0 t}{2} \cos \theta) & \exp (- i \frac{\omega_0 t}{2} \sin \theta)\\
\exp (- i \frac{\omega_0 t}{2} \sin \theta) & \exp ( i \frac{\omega_0 t}{2} \cos \theta)
\end{array}\right)\left( \begin{array}{c}1\\0\end{array}\right)\\
&= \left( \begin{array}{cc}
\exp (- i \frac{\omega_0 t}{2} \cos \theta)\\
\exp (- i \frac{\omega_0 t}{2} \sin \theta)\end{array}\right)
\end{align*}
[/tex]
But this gives [tex]P(t) = \left| (\begin{array}{cc} 0 & 1 \end{array})\left( \begin{array}{cc}
\exp (- i \frac{\omega_0 t}{2} \cos \theta)\\
\exp (- i \frac{\omega_0 t}{2} \sin \theta)\end{array}\right)\right|^2 = 1[/tex], which is obviously wrong.
I've looked over my math and don't see any obvious mistakes, so I'm not sure what I'm doing wrong.