Electrons escaping a metal surface

In summary, the Fermi-Dirac distribution and the contribution of escaping electrons to current density were discussed. The rate at which electrons escape at a unit area of the metal's surface can be calculated by integrating the number density of electrons with momentum in a certain range, taking into account the factor of two for electron spin. The final integral includes a restriction that only electrons with a certain momentum can escape.
  • #1
ergospherical
1,020
1,300
Homework Statement
Electrons in a semi-infinite slab (z < 0) of metal behave as an ideal non-relativistic Fermi gas. They escape the surface if ##p_z^2/(2m) > E_F + V##, where ##E_F## is the Fermi energy and ##V## is a potential barrier - what is the current density of escaping electrons? Assume ##E_F \gg k_B T## and ##V \gg k_B T##.
Relevant Equations
N/A
In the low temperature limit ##\mu \approx E_F## and the Fermi-Dirac distribution is ##n(E) \approx g(E)/(e^{\beta(E-E_F)}+1)##. An escaping electron contributes ##\Delta j_z = -ev_z = -ep_z/m## to the current density. How can I calculate the rate that electrons escape at? I can't see how to relate ##p_z## to the Fermi-Dirac distribution (apart from ##E = p^2/(2m) = (p_x^2 + p_y^2 + p_z^2)/(2m)##, in which case I don't know what to say about the transverse component of the momentum).
 
Physics news on Phys.org
  • #2
ergospherical said:
How can I calculate the rate that electrons escape at?

##g(E) \large \frac{dE}{e^{\beta(E-E_F)}+1}## gives the number density of electrons with energy between ##E## and ##E + dE##.

In terms of momentum, verify that the number density of electrons with momentum in the range ##(p_x, p_y, p_z)## to ##(p_x+dp_x, p_y+dp_y, p_z + dp_z)## is $$\frac{2}{h^3} \frac{dp_x dp_y dp_z}{e^{\beta[(p_x^2+p_y^2+p_z^2)/(2m)-E_F]}+1}$$ Use this to set up an integral that gives the rate ##R## at which electrons will escape from a unit area of the surface of the metal. $$R = \int_{??}^\infty dp_z \int_{-\infty}^\infty dp_y\int_{-\infty}^\infty dp_x \rm {\,[\, integrand \,\, left \,\, for \,\, you \, :) \,]}$$
 
  • Like
Likes ergospherical
  • #3
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.

Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
 
Last edited:
  • #4
ergospherical said:
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.
Electron spin allows two electrons to be in each momentum state. This is easy to forget.

ergospherical said:
Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
Yes. Very nice.
 

Related to Electrons escaping a metal surface

What is the process called when electrons escape from a metal surface?

The process is called "photoelectric emission" or "photoemission" when electrons escape due to light exposure, and "thermionic emission" when electrons escape due to thermal energy.

What factors influence the ability of electrons to escape from a metal surface?

The primary factors include the work function of the metal, the energy of the incident photons (in the case of photoelectric emission), and the temperature of the metal (in the case of thermionic emission).

What is the work function of a metal?

The work function is the minimum energy required to remove an electron from the surface of a metal. It is usually measured in electron volts (eV).

How does the photoelectric effect demonstrate the particle nature of light?

The photoelectric effect shows that light can be thought of as being made up of particles called photons. When these photons have sufficient energy (greater than the work function), they can transfer that energy to electrons, causing them to escape from the metal surface.

What are some practical applications of electron emission from metal surfaces?

Practical applications include electron microscopy, photomultiplier tubes, vacuum tubes, and the generation of X-rays. These technologies rely on the controlled emission of electrons from metal surfaces.

Similar threads

  • Advanced Physics Homework Help
Replies
11
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
3K
Replies
4
Views
2K
  • Quantum Physics
Replies
16
Views
1K
Replies
1
Views
1K
Back
Top