- #1
lightofthemoon
- 12
- 0
Homework Statement
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. If a second electron is initially at 20 m on the x axis, and given an initial velocity of 350 m/s towards the origin, it does not reach it. How close to the origin does it come?
Homework Equations
U = k q1 q2 / r
W = q ∫ E dl
E = F / q
KE = .5mv^2
The Attempt at a Solution
[/B]
I'm not quite sure how to approach this problem...
Calculate potential energy of the second electron:
U = k q1 q2 / r
U = (k * (1.6 * 10^-19) ^2 / 19) - (k * (1.6 * 10^-19) ^2 / 21)
U = 1.16*10^-30
Calculate initial kinetic energy
KE = .5mv^2
KE = .5 * 9.11 * 10 ^-31 * 350^2
KE = 5.58 * 10^-26
Calculate work needed to be done to bring it to the origin
not very sure about this part
W = q ∫ E dl
since all of this is done on x-axis I think the equation will simplify to W = qEx ?
E = kq / r
E = (9 * 10^9 * 1.6 * 10^-19 / 21) - (9 * 10^9 * 1.6 * 10^-19 / 19)
E = -7.22 * 10 ^-12
W = 2.3* 10^-29
From here I'm not quite sure how to continue...