- #1
bomba923
- 763
- 0
Is the notation
[tex]\left\{ \begin{gathered}
{\text{inequality}} \hfill \\
{\text{inequality}} \hfill \\
{\text{inequality}} \hfill \\
\end{gathered} \right\} [/tex]
generally accepted to denote the solution set (i.e., intersection) of the inequalities?
If so, then the following (part of a problem I came up with) should be easy to understand:
[tex]\bigcup\limits_{\begin{subarray}{l}
\left( {i,j,k} \right) \in \mathbb{N}^3 , \\
i < j < k \leqslant n
\end{subarray}} {\left\{ \begin{gathered}
\left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}
{x_i - x_k } & {y_i - y_k } \\
{x_i - x_j } & {y_i - y_j } \\
\end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}
{x_i - x_k } & {y_i - y_k } \\
{x_i - x_j } & {y_i - y_j } \\
\end{array} } \right| \hfill \\
\left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}
{x_i - x_j } & {y_i - y_j } \\
{x_i - x_k } & {y_i - y_k } \\
\end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}
{x_i - x_j } & {y_i - y_j } \\
{x_i - x_k } & {y_i - y_k } \\
\end{array} } \right| \hfill \\
\left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}
{x_j - x_i } & {y_j - y_i } \\
{x_j - x_k } & {y_j - y_k } \\
\end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}
{x_j - x_i } & {y_j - y_i } \\
{x_j - x_k } & {y_j - y_k } \\
\end{array} } \right| \hfill \\
\end{gathered} \right\}} [/tex]
Is there a simpler/more elegant way to express this, or is it fine the way it is?
[tex]\left\{ \begin{gathered}
{\text{inequality}} \hfill \\
{\text{inequality}} \hfill \\
{\text{inequality}} \hfill \\
\end{gathered} \right\} [/tex]
generally accepted to denote the solution set (i.e., intersection) of the inequalities?
If so, then the following (part of a problem I came up with) should be easy to understand:
[tex]\bigcup\limits_{\begin{subarray}{l}
\left( {i,j,k} \right) \in \mathbb{N}^3 , \\
i < j < k \leqslant n
\end{subarray}} {\left\{ \begin{gathered}
\left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}
{x_i - x_k } & {y_i - y_k } \\
{x_i - x_j } & {y_i - y_j } \\
\end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}
{x_i - x_k } & {y_i - y_k } \\
{x_i - x_j } & {y_i - y_j } \\
\end{array} } \right| \hfill \\
\left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}
{x_i - x_j } & {y_i - y_j } \\
{x_i - x_k } & {y_i - y_k } \\
\end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}
{x_i - x_j } & {y_i - y_j } \\
{x_i - x_k } & {y_i - y_k } \\
\end{array} } \right| \hfill \\
\left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}
{x_j - x_i } & {y_j - y_i } \\
{x_j - x_k } & {y_j - y_k } \\
\end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}
{x_j - x_i } & {y_j - y_i } \\
{x_j - x_k } & {y_j - y_k } \\
\end{array} } \right| \hfill \\
\end{gathered} \right\}} [/tex]
Is there a simpler/more elegant way to express this, or is it fine the way it is?
Last edited: