- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
Dummit and Foote (D&F), Ch15, Section 15.1, Exercise 15 reads as follows:
----------------------------------------------------------------------------------------------------
If [itex] k = \mathbb{F}_2 [/itex] and [itex] V = \{ (0,0), (1,1) \} \subset \mathbb{A}^2 [/itex],
show that [itex] \mathcal{I} (V) [/itex] is the product ideal [itex] m_1m_2 [/itex]
where [itex] m_1 = (x,y) [/itex] and [itex] m_2 = (x -1, y-1) [/itex].
------------------------------------------------------------------------------------------------------
I am having trouble getting started on this problem.
One issue/problem I have is - what is the exact nature of [itex] m_1, m_2 [/itex] and [itex] m_1m_2 [/itex]. What (explicitly) are the nature of the elements of these ideals.
I would appreciate some help and guidance.
Peter
Note: D&F define [itex] \mathcal{I} (V) [/itex] as follows:
[itex] \mathcal{I} (V) = \{ f \in k(x_1, x_2, ... , x_n) \ | \ f(a_1, a_2, ... , a_n) = 0 \ \ \forall \ \ (a_1, a_2, ... , a_n) \in V \} [/itex]
----------------------------------------------------------------------------------------------------
If [itex] k = \mathbb{F}_2 [/itex] and [itex] V = \{ (0,0), (1,1) \} \subset \mathbb{A}^2 [/itex],
show that [itex] \mathcal{I} (V) [/itex] is the product ideal [itex] m_1m_2 [/itex]
where [itex] m_1 = (x,y) [/itex] and [itex] m_2 = (x -1, y-1) [/itex].
------------------------------------------------------------------------------------------------------
I am having trouble getting started on this problem.
One issue/problem I have is - what is the exact nature of [itex] m_1, m_2 [/itex] and [itex] m_1m_2 [/itex]. What (explicitly) are the nature of the elements of these ideals.
I would appreciate some help and guidance.
Peter
Note: D&F define [itex] \mathcal{I} (V) [/itex] as follows:
[itex] \mathcal{I} (V) = \{ f \in k(x_1, x_2, ... , x_n) \ | \ f(a_1, a_2, ... , a_n) = 0 \ \ \forall \ \ (a_1, a_2, ... , a_n) \in V \} [/itex]
Last edited: