- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everyone,
Here is the question:
"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."
The attempted work:
Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).
Do I solve for $k$?
If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.
So is it right to the proof this way?
Here is the question:
"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."
The attempted work:
Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).
Do I solve for $k$?
If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.
So is it right to the proof this way?