- #1
WMDhamnekar
MHB
- 379
- 28
- Homework Statement
- The probability##P_m(r, n) = n^{-r} \cdot E_m(r, n)## of finding exactly m cells empty satisfies ##P_{m}(r+1, n) = P_m(r, n)\cdot \frac{n-m}{n} + P_{m+1}(r, n)\cdot \frac{m+1}{n}##
- Relevant Equations
- The number of distributions leaving exactly m cells empty ##E_m(r, n) = \binom{n}{m} A(r, n-m) = \binom{n}{m} \displaystyle\sum_{v=0}^{n-m} (-1)^v \binom{n-m}{v}(n-m-v)^r ##
##P_m(r + 1, n)= n^{-r}\cdot E_m(r + 1, n), E_m(r + 1, n)= \binom{n}{m} A(r+1, n-m) = \binom{n}{m} \displaystyle\sum_{v=0}^{n-m}(-1)^v \binom{n-m}{v}(n-m-v)^r ##
##P_{m+1}(r, n) = \binom{n}{m} A(r, n-m-1) =\binom{n}{m+1} \displaystyle\sum_{v=0}^{n-m-1}(-1)^v \binom{n-m-1}{v}(n-m-1-v)^r \tag{2}##
If n=12, r=15, m=3, then ##E_3(15, 12) = 5.35910901948e15, P_3(15,12)= \frac{5.35910901948e15}{12^{15}}=0.34783549783##
##P_4(15,12)=12^{-15}\cdot E_4(15,12)=12^{-15}\cdot4.32354508185e15= 0.28062173217 ##
##P_3(16,12)= 12^{-16}\cdot E_3(16,12)=0.354417200752##
##P_3(16,12)= 0.34783549783 \times\frac34 + 0.28062173217\times \frac13= 0.354417200762##
Is this correct way to prove?
##P_{m+1}(r, n) = \binom{n}{m} A(r, n-m-1) =\binom{n}{m+1} \displaystyle\sum_{v=0}^{n-m-1}(-1)^v \binom{n-m-1}{v}(n-m-1-v)^r \tag{2}##
If n=12, r=15, m=3, then ##E_3(15, 12) = 5.35910901948e15, P_3(15,12)= \frac{5.35910901948e15}{12^{15}}=0.34783549783##
##P_4(15,12)=12^{-15}\cdot E_4(15,12)=12^{-15}\cdot4.32354508185e15= 0.28062173217 ##
##P_3(16,12)= 12^{-16}\cdot E_3(16,12)=0.354417200752##
##P_3(16,12)= 0.34783549783 \times\frac34 + 0.28062173217\times \frac13= 0.354417200762##
Is this correct way to prove?
Last edited: