- #1
bergausstein
- 191
- 0
Eliminate the constants
$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$
since there's two constants I took the derivative twice
$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$
$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!