- #1
danago
Gold Member
- 1,123
- 4
Given the following displacement vector (and thus, also, acceleration vector):
[tex]
\begin{array}{l}
\overrightarrow r (t) = \left( {\begin{array}{*{20}c}
{1 + 3\cos (\frac{{\pi t}}{2})} \\
{2 + 4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) \\
\overrightarrow a (t) = \left( {\begin{array}{*{20}c}
{\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\
{ - \pi ^2 \sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) \\
\end{array}
[/tex]
I need to show that the body is undergoing eliptical motion. This is how i proceeded:
[tex]
\begin{array}{l}
\overrightarrow r (t) = \left( {\begin{array}{*{20}c}
{1 + 3\cos (\frac{{\pi t}}{2})} \\
{2 + 4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right) \\
\therefore\left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \overrightarrow r (t) - \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right) \\
\\
\overrightarrow a (t) = \left( {\begin{array}{*{20}c}
{\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\
{ - \pi ^2 \sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left[ {\overrightarrow r (t) - \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right)} \right] \\
\end{array}
[/tex]
Is that how i should do it? By showing that the acceleration is proportional to the displacement vector?
Thanks in advance,
Dan.
[tex]
\begin{array}{l}
\overrightarrow r (t) = \left( {\begin{array}{*{20}c}
{1 + 3\cos (\frac{{\pi t}}{2})} \\
{2 + 4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) \\
\overrightarrow a (t) = \left( {\begin{array}{*{20}c}
{\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\
{ - \pi ^2 \sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) \\
\end{array}
[/tex]
I need to show that the body is undergoing eliptical motion. This is how i proceeded:
[tex]
\begin{array}{l}
\overrightarrow r (t) = \left( {\begin{array}{*{20}c}
{1 + 3\cos (\frac{{\pi t}}{2})} \\
{2 + 4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right) \\
\therefore\left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \overrightarrow r (t) - \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right) \\
\\
\overrightarrow a (t) = \left( {\begin{array}{*{20}c}
{\frac{{ - 3\pi ^2 }}{4}\cos (\frac{{\pi t}}{2})} \\
{ - \pi ^2 \sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left( {\begin{array}{*{20}c}
{3\cos (\frac{{\pi t}}{2})} \\
{4\sin (\frac{{\pi t}}{2})} \\
\end{array}} \right) = \frac{{ - \pi ^2 }}{4}\left[ {\overrightarrow r (t) - \left( {\begin{array}{*{20}c}
1 \\
2 \\
\end{array}} \right)} \right] \\
\end{array}
[/tex]
Is that how i should do it? By showing that the acceleration is proportional to the displacement vector?
Thanks in advance,
Dan.