- #1
P.Bo
- 18
- 0
Something that bugged me when doing this lab. Standard little glass vials of gas, toss it in a 5kV potential make pretty color, look through diffraction grating see the individual wavelengths that are the finger prints of the element.
My question however are all wavelengths equally represented? I'm presuming that there's a rather large number of gas atoms even in a thin glass tube, but for something like hydrogen where the Balmer series has 4 colors, are there an equal number of photons represented at each color when you take the average of the "large" number of transitions occurring? Or are some colors more likely than others?
I'm trying to get my finger on the pulse of the truth behind why some colors look brighter, my initial thought is that our eye sensitivity to certain wavelengths is the sole factor in determining brightness, but now I'm wondering if some colors simply get more photons emitted on average than others.
My question however are all wavelengths equally represented? I'm presuming that there's a rather large number of gas atoms even in a thin glass tube, but for something like hydrogen where the Balmer series has 4 colors, are there an equal number of photons represented at each color when you take the average of the "large" number of transitions occurring? Or are some colors more likely than others?
I'm trying to get my finger on the pulse of the truth behind why some colors look brighter, my initial thought is that our eye sensitivity to certain wavelengths is the sole factor in determining brightness, but now I'm wondering if some colors simply get more photons emitted on average than others.