Endless or Finite? 0.000...01 Closest to Zero?

  • Thread starter kurushio95
  • Start date
  • Tags
    Infinite
In summary: Infinite is a pretty big word though, so I'm not sure if that's even possible.In summary, the individual thinks that infinite is not real, and that there is no smallest positive number that is not zero. However, they think that if infinity exists, it must consist of two or more disconnected sequences. They also think that the real numbers are not necessarily the same thing as our space, and that after learning about the real numbers and their extensions, they are thinking about whether or not an infinite sequence could exist.
  • #1
kurushio95
31
0
I think infinite is not real. Think about it. What is the closest positive number to zero that you can have? it would be 0.000...01, right? infinite zeros plus one. What do you guys think? I didn't know where this would belong, so I bunged it here.
 
Physics news on Phys.org
  • #2
kurushio95 said:
What is the closest positive number to zero that you can have?
Why do you think there is a closest?

it would be 0.000...01, right? infinite zeros plus one.
That cannot a decimal number. The places in a decimal number are indexed by the integers; therefore, each place must be at a finite distance from the decimal point.

Also, your notation is poor. It suggests that you have a consecutive sequence of zeroes, which must necessarily be finite. If it were infinite, then it must consist of two or more disconnected sequences. I use a pipe (|) to denote these breaks -- it is, in fact, possible to have an infinite connected sequence of zeroes:
000...​
and it is possible to have an infinite connected sequence of zeroes followed by a 1:
000... | 1​
however, there is no number to the immediate left of the 1. If you want every place (aside from the left endpoint) to have a number to its immediate left, you can build a sequence like
000... | ...0001​
but these two components do not connect in the middle. Of course, this and the previous sequence cannot denote a decimal number.
 
Last edited:
  • #3
kurushio95 said:
I think infinite is not real. Think about it. What is the closest positive number to zero that you can have? it would be 0.000...01, right? infinite zeros plus one. What do you guys think? I didn't know where this would belong, so I bunged it here.

Ok, so you think infinite isn't real, and yet you think that you can have 0.[infinite 0s]1?? How can you have an infinite number of 0s if infinity isn't real? A self-contradictory stance that proves itself is interesting, but of little philosophical or scientific value, IMO.
 
  • #4
I forgot; I had some nonmathematical comments too.

kurushio95 said:
I think infinite is not real.
What does any of this have to do with reality?


infinite zeros plus one.
This is not what you meant. The zeroes are not infinite; it's the quantity of zeroes that is infinite. You meant to say something like "infinitely many zeroes".

In fact, zero has the opposite quality: zero is smaller than every positive real number, and is thus an infinitessimal number. (It is, of course, the only infinitessimal real number)
 
  • #5
Hurkyl said:
it must consist of two or more disconnected sequences.
Disconnected is an awkward word; to use here. I think I implied what I meant, but shame on me for not explicitly defining it!

What I mean is that if you have a zero in one sequence, you cannot reach the other sequence by iteratively performing the operation "move from this zero to an adjacent zero". Maybe I should have called this "stepwise disconnected".
 
  • #6
like i said, i didn't know where a question like this would go. I guess the best way i could explain it is to ask what the smallest positive number is that is not zero. I'm having a hard time phrasing my thoughts into words, in case you couldn't tell.

P.S. I'm only in high school math, so I wasn't expecting to be 100% correct in my notation. thanks for pointing it out though and showing me the correct way.
 
  • #7
It may be easier to think about small numbers like this with fractions. Ie, 1/10, 1/100, 1/1000, etc. No matter how many zeroes you put in there, you can always put in one more.
 
  • #8
kurushio95 said:
I guess the best way i could explain it is to ask what the smallest positive number is that is not zero. I'm having a hard time phrasing my thoughts into words, in case you couldn't tell.
The problem may be that you don't realize you have made an assumption. When you ask
what is the smallest positive number that is not zero​
you have assumed that such a thing exists.

The truth is that such a thing does not exist; one of the best ways of fighting off these misguided assumptions is to try and prove them. By failing When you to prove that there really is a smallest nonzero positive number, you will begin to cast off this error that is leading you astray.
 
  • #9
Part of the confusion arises from the intuitive assumption that the real numbers somehow describe our physically real space. This is probably the original motivation behind the real numbers, but once one learns about the rigorous construction of the real numbers, one inevitably understands that they are not necessarily the same thing as our space.

After learning that there is also different extensions to the real numbers, I've started to think if such extension could exist also, where the smallest positive number would exist. It couldn't be a field extension at least, but perhaps some other extension, that would still contain the field of real numbers as a subset.

kurushio95, want to proceed with you philosophy? Then get rigor! :biggrin:

(... although it would probably be better to first understand real numbers well)
 

FAQ: Endless or Finite? 0.000...01 Closest to Zero?

What is the difference between endless and finite numbers?

The main difference between endless and finite numbers is that endless numbers, also known as infinite numbers, have no definite end or limit, while finite numbers have a definite end or limit. Endless numbers can continue on forever without repeating, while finite numbers will eventually end or repeat in a pattern.

Is 0.000...01 the same as 0?

No, 0.000...01 is not the same as 0. While both numbers may appear small or close to zero, 0.000...01 is still a finite number, while 0 is considered an infinite number. This is because 0.000...01 has a definite end, while 0 does not.

Why is 0.000...01 considered the closest number to zero?

0.000...01 is considered the closest number to zero because it is the smallest finite number that can be written without using any non-zero digits. It is essentially the smallest possible distance away from zero on the number line.

Can an endless number be smaller than 0.000...01?

No, an endless number cannot be smaller than 0.000...01. As stated before, 0.000...01 is the smallest possible distance away from zero on the number line, and endless numbers have no definite end or limit, so they cannot be smaller than this finite number.

How is the concept of endless or finite numbers relevant in scientific research?

The concept of endless or finite numbers is relevant in many areas of scientific research, including physics, astronomy, and mathematics. Endless numbers are used to represent continuous quantities, such as time, distance, and temperature, while finite numbers are used to represent discrete quantities, such as counts and measurements. Understanding the difference between endless and finite numbers is crucial for accurately representing and analyzing data in scientific research.

Similar threads

Back
Top