- #1
Michael Korobov
- 6
- 0
- Homework Statement
- Problem 5.17 from David Morin's "Introduction to classical mechanics"
At t = 0, a massless bucket contains a mass M of sand. It is connected to a wall by a massless spring with constant tension T (that is, independent of length). The ground is frictionless, and the initial distance to the wall is L. At later times, let x be the distance from the wall, and let m be the mass of sand in the bucket. The bucket is released, and on its way to the wall, it leaks sand at a rate dm/dx = M/L. In other words, the rate is constant with respect to distance, not time; and it ends up empty right when it reaches the wall. Note that dx is negative, so dm is also.
Q.
(a) What is the kinetic energy of the (sand in the) bucket, as a function of x? What is its maximum value?
- Relevant Equations
- Conservation of momentum
Hi,
Can you please help me understand how the formula of energy decreasing during a sand leaking is obtained?
One of possible solution to this problem, suggested in the textbook, states that when the bucket moves from x to x+dx (d is negative), there are two components responsible of energy change: one is due to the work done by the spring (-T)dx, and another which is proportional to dx/x, i.e. the energy change is E dx/x. Thus
$$dE=-Tdx+E\frac{dx}{x}$$.
How this component E dx/x is obtained?
Thanks a lot!
Can you please help me understand how the formula of energy decreasing during a sand leaking is obtained?
One of possible solution to this problem, suggested in the textbook, states that when the bucket moves from x to x+dx (d is negative), there are two components responsible of energy change: one is due to the work done by the spring (-T)dx, and another which is proportional to dx/x, i.e. the energy change is E dx/x. Thus
$$dE=-Tdx+E\frac{dx}{x}$$.
How this component E dx/x is obtained?
Thanks a lot!