- #1
lampCable
- 22
- 1
Homework Statement
Consider an ensamble of particles that can be only in two states with the difference ##\delta## in energy, and take the ground state energy to be zero. Is it possible to find the particle in the excited state if ##k_BT=\delta/2##, i.e. if the thermal energy is lower than the gap between the energy levels? If so, explain why.
Homework Equations
The Attempt at a Solution
We calculate the partition function which becomes ##Z = 1+e^{-\delta/k_BT} = 1+e^{-2}## and so the probability for finding a particle in the excited state is ##P(excited) = \frac{e^{-\delta/k_BT}}{Z} = \frac{e^{-2}}{1+e^{-2}} \approx 0.12##. So we can therefore expect to find particles in the excited state.
Since the thermal energy ##k_BT## is too small to put particles in the excited state there must be something else going on. The solution to the problem says that it is due to energy fluctuations for a system in thermal contact with a reservoir of constant temperature. Now, it is possible to show that the fluctuations in the energy in the canonical ensamble is $$\frac{\Delta E}{E} \propto \frac{1}{\sqrt{N}},$$ where ##E## is the energy, ##\Delta E## is the standard deviation in ##E## and ##N## is the number of particles. But in the thermodynamic limit, i.e. when the number of particles is so big that the fluctuations are in principle zero, how can this be the reason?