- #1
Pouramat
- 28
- 1
- Homework Statement
- Consider
$$
\mathcal L = \sqrt{-g} (\frac{-1}{4}F^{\mu \nu}F_{\mu \nu} + A_\mu J^\mu)
$$
a) Find ##T^{\mu \nu}##
b) Adding a new term to the Lagrangian ##\mathcal L' = \beta R^{\mu \nu} g^{\rho \sigma} F_{\mu \rho} F_{\nu \sigma}##. How are Maxwell's eqs altered? How about Einstein's Eqs? Is the current still conserved?
- Relevant Equations
- N/A
a) I'd separated the Lagrangian into:
$$
\mathcal L = \mathcal L_{Max}+\mathcal L_{int}
$$
in which ##\mathcal L_{Max} =\frac{-1}{4}\sqrt{-g} F^{\mu \nu}F_{\mu \nu}## and ##\mathcal L_{int} =\sqrt{-g} A_\mu J^\mu##
Thus:
$$
T^{\mu \nu}_{Max}= F^{\mu \lambda}{F^{\nu}}_{\lambda}-\frac{1}{4}F^{\alpha \beta}F_{\alpha \beta}
$$
But I don't know how to treat the second term in Lagrangian ##\mathcal L_{int} =\sqrt{-g} A_\mu J^\mu##
b) I could'nt solve it...
$$
\mathcal L = \mathcal L_{Max}+\mathcal L_{int}
$$
in which ##\mathcal L_{Max} =\frac{-1}{4}\sqrt{-g} F^{\mu \nu}F_{\mu \nu}## and ##\mathcal L_{int} =\sqrt{-g} A_\mu J^\mu##
Thus:
$$
T^{\mu \nu}_{Max}= F^{\mu \lambda}{F^{\nu}}_{\lambda}-\frac{1}{4}F^{\alpha \beta}F_{\alpha \beta}
$$
But I don't know how to treat the second term in Lagrangian ##\mathcal L_{int} =\sqrt{-g} A_\mu J^\mu##
b) I could'nt solve it...