Energy of Electon and Energy of the Field

  • Thread starter Thread starter ghotra
  • Start date Start date
  • Tags Tags
    Energy Field
Click For Summary
The discussion centers on the energy of an electron at rest, which is typically expressed as mc^2, and whether this energy is purely classical or influenced by quantum mechanics. It raises the question of whether an electron can truly be at rest, given the uncertainty principle, suggesting that its energy may exceed mc^2. The relationship between the electron's energy and the energy stored in its electric and magnetic fields is also explored, indicating that these energies are distinct and frame-dependent. The conversation emphasizes that energy varies based on the observer's frame of reference, and concludes that while an electron can be considered at rest in a specific frame, its field energy remains significant and non-zero. The complexities of reconciling special relativity with quantum mechanics are acknowledged, particularly regarding the nature of the electron's mass and energy contributions.
ghotra
Messages
53
Reaction score
0
The energy of an electron at rest is mc^2.

1) Can an electron even be at rest? It seems that the answer is "no" by the uncertainty principle. Thus, it would seem that every electron has energy greater than mc^2. Is this a correct statement?

2) Is this a classical quantity? That is, if I were to determine the electric and magnetic fields of an electron quantum mechanically, and if I integrated the square of the electric field to determine the total energy stored in those fields, would I get E = mc^2 as an answer.

Basically, I am wondering which (if any) of these statements is true.

E = E_rest + E_fields

E = E_rest = E_fields

Can we say: An electron has no energy---rather, it's fields due.

Anyway, this wasn't super organized, but I hope my question is clear. I am trying to resolve (if it needs to be) E = mc^2 with quantum mechanics and I don't understand how the energy of a particle relates to the field that it creates.
 
Physics news on Phys.org
The way that you resolve special relativity with quantum mechanics is a rather complicated process (well, not horridly complicated, but unpleasant to say the least).

Essentially, the energy of any particle is frame-dependent. At the moment, my computer has no kinetic energy because we aren't moving relative to each other. Once I dash out the door for a beer run I could say that the computer has kinetic energy relative to my frame of reference.

You can have non-violation of the Heisenberg principle by having a particle in a momentum eigenstate. Only, in special relativity, we contend with four-vectors, such as
\mathbf{p} = (p^0, p^1, p^2, p^3)
where p^0 represents the energy component of the momentum four-vector. So let's suppose that we start out with a particle in a four-momentum eigenstate. The Poincare Group clearly defines how this state transforms under translations, boosts, and rotations. In our particular case a translation has no effect on the momentum (had it been in a position eigenstate that would be different). However, the four-momentum that defines the state vector transforms according to the Lorentz transformations. Thus, out pops a new momentum value and the state measured will be different between two reference frames that are moving relative to each other, call them \mathcal{O} and \mathcal{O}'.

As for your other questions, the electric field energy is distinct from the kinetic energy of the electron, even though the source is different. Energy is a frame-dependent quantity (as you can see up above), and so the energy of the electron will be different in differing frames. Furthermore, if I'm moving relative to the electron, I will detect a new magnetic field that has formed and which has energy. This arises out of the Lorentz invariance of charge. So I'll have an electric field (which will in general be time-varying) and a magnetic field that an observer in the rest frame of the electron won't see.

I guess to sum up my answer, energy depends largely on what frame of reference you are in.
 
That all sounds good. So let me state this:

1) An electon and I are in the same inertial frame.
2) The electron is in a momentum eigenstate.

Thus,

1) The electon is a "rest".
2) The energy of the electron is E = mc^2
3) The energy stored is the fields does not contribute to the energy of the electron.

Is this correct?
 
I believe so, yes. Maybe someone else might check my work. I just note that
E^2 = p^2 + m^2
in naturalized units (i.e. c = 1). Just keep that in mind.
 
Yes, QM allows an electron to be at rest, that is it can be in a sate wih p=0. Note, however, that a localized state, say x=0, requires all momenum eigenstates to be present -- due to the Fourier expansion of the delta function.

The energy in the electron's field is certainly non-zero; classically the local energy density of E*E + B*B does not vanish, also true in QM. Frankly we don't have a clue about a "bare" electron -- is the electron's mass due entirely to its fields, or does it have some residual mass due to who knows what. (See any advanced E&M book, and any QED or QFT dealing wih renormalization; or Dirac's QM book)

Regards,
Reilly Atkinson
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K