- #1
Trollfaz
- 141
- 14
Imagine an object, e.g throwing knife, spins in the air but not forced to rotate about a particular axis, i.e no rod impaling it and forcing it to spin about the rod. Then the axis of rotation converges to it's center of mass (CM) to minimize I. But there's nowhere for it's rotation energy to go assuming no resistive forces of the medium.
$$E=\frac{1}{2} I \omega^2= k$$
Both I and ##\omega## are functions of t and
##\frac{dI}{dt}<0##
So angular velocity increases?
$$\frac{dE}{dt}=\frac{dI}{dt}\omega^2+ 2I\omega\frac{d\omega}{dt}=0$$
$$\frac{d\omega}{dt}=-\frac{dI}{dt}\omega^2/2I\omega>0$$
And if we know the rate of change of I we can solve this differential equation to find how angular velocity evolves
$$E=\frac{1}{2} I \omega^2= k$$
Both I and ##\omega## are functions of t and
##\frac{dI}{dt}<0##
So angular velocity increases?
$$\frac{dE}{dt}=\frac{dI}{dt}\omega^2+ 2I\omega\frac{d\omega}{dt}=0$$
$$\frac{d\omega}{dt}=-\frac{dI}{dt}\omega^2/2I\omega>0$$
And if we know the rate of change of I we can solve this differential equation to find how angular velocity evolves