- #1
LancsPhys14
- 1
- 0
- Homework Statement
- Two quantities of water, of mass M and nM where n is constant, have temperatures T1 and T2. They are adiabatically mixed together and the pressure remains constant. What is the entropy change of the universe in this process?
- Relevant Equations
- dU=δW+δQ
ΔS=ΔSh+ΔSc
ΔS=Q/T
dS=δQ/T
Q=mcΔT
the entropy change for a reversible adiabatic process is zero as it remains constant. Is this a reversible process?
assuming T1>T2:
hot (h) water has mass M, temp T1
cold (c) water has mass nM, temp T2
let the final temperature be Tf
if δQ=0 as the process is adiabatic, |Qh|=|Qc| so Qh=-Qc
by Q=mcΔT, Qh=Mc(T1-Tf) and Qc=nMc(T2-Tf) hence Mc(T1-Tf)=-nMc(T2-Tf)
this give Tf=(T2+(n^-1)T1)/((n^-1)+1)
I am unsure where to go from here as I have the equation ΔS=mcln(Tf/Ti) but an unsure what to use for Ti
assuming T1>T2:
hot (h) water has mass M, temp T1
cold (c) water has mass nM, temp T2
let the final temperature be Tf
if δQ=0 as the process is adiabatic, |Qh|=|Qc| so Qh=-Qc
by Q=mcΔT, Qh=Mc(T1-Tf) and Qc=nMc(T2-Tf) hence Mc(T1-Tf)=-nMc(T2-Tf)
this give Tf=(T2+(n^-1)T1)/((n^-1)+1)
I am unsure where to go from here as I have the equation ΔS=mcln(Tf/Ti) but an unsure what to use for Ti