Entropy due to this irreversible process

AI Thread Summary
The discussion focuses on calculating the entropy generated due to irreversibilities in an adiabatic container with water and a propeller. It establishes that the change in internal energy is equal to the work done by the propeller, leading to the relationship dS = dU/T. The participants emphasize that since entropy is a state function, the change in entropy can be determined using a reversible path, allowing for the calculation of heat transfer as dS = δQ_rev/T. The final expression for entropy change is derived as ΔS = mC ln(T_f/T_i), where T_f is the final temperature after work is done on the water. This analysis highlights the importance of reversible processes in thermodynamic calculations.
Simobartz
Messages
13
Reaction score
1
Homework Statement
There is an adiabatic container filled with water. The volume of the container is fixed and inside the continer there is a propeller electrically connected to the outside. If the work done by the propeller on the water is ##\delta W_{prop}##, what is the entropy generated due to irreversibilities?
Relevant Equations
$$dU=TdS-PdV$$
I think the solution is:
$$dU=\delta W_{prop}$$
$$dU=TdS-PdV$$
$$dV=0$$
then, $$TdS=\delta W_{prop}$$ and so $$dS=dU/T$$
and by the way, it correct to say that, if the transformation between the initial and the final state would happen in a reversible way then the heat transfer could be calculated as
$$dS=\delta Q_{rev} /T$$
$$\delta Q _{rev}=TdS$$
$$\delta Q_{rev}=\delta W_{prop}$$
 

Attachments

  • tempImageE1vYAx.png
    tempImageE1vYAx.png
    23.4 KB · Views: 114
Physics news on Phys.org
Simobartz said:
Homework Statement:: There is an adiabatic container filled with water. The volume of the container is fixed and inside the container there is a propeller electrically connected to the outside. If the work done by the propeller on the water is ##\delta W_{prop}##, what is the entropy generated due to irreversibilities?
Relevant Equations:: $$dU=TdS-PdV$$

I think the solution is:
$$dU=\delta W_{prop}$$
$$dU=TdS-PdV$$
$$dV=0$$
then, $$TdS=\delta W_{prop}$$ and so $$dS=dU/T$$
and by the way, it correct to say that, if the transformation between the initial and the final state would happen in a reversible way then the heat transfer could be calculated as
$$dS=\delta Q_{rev} /T$$
$$\delta Q _{rev}=TdS$$
$$\delta Q_{rev}=\delta W_{prop}$$
You have the right idea. Since entropy is a state function, entropy change does not depend on the process in going from the initial state to the final state. So it is a matter of finding a convenient reversible path from initial to final state and calculating ##\Delta S = \int_{i}^{f}\frac{dQ_{rev}}{T}## along that path.

The equivalent reversible path would be heat flow into the water increasing internal energy by an amount equal to the work done.

Since W=Q=mC(Tf-Ti), [where m is the mass of the water and C is its specific heat capacity], ##T_f=T_i+W/mC## and ##dW = dQ = mCdT##.

##\Delta S = \int_{T_i}^{T_i+W/mC}\frac{dQ_{rev}}{T} = \int_{T_i}^{T_i+W/mC}\frac{mCdT}{T} ##
So:
##\Delta S = mC\ln\left(\frac{T_i+W/mC}{T_i}\right)##

AM
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top