- #1
VSayantan
- 59
- 4
Homework Statement
A system having ##N## non-degenerate energy eigenstates populated by##N## identical spin-zero particles and ##2N## identical spin-half particles. There are no interaction between any of these particles. If ##N=1000## what is the entropy of the system?
Homework Equations
Third law of thermodynamics $$S=k_B \ln W$$
where ##S## is entropy, ##k_B## is the Botlzmann constant and ##W## is the thermodynamic probability.
Thermodynamic probability, i.e., the total number of independent ways of distributing ##N_i## particles in ##g_i## states is
for ##spin-integral## particles $$W= \prod_{i=1}^{n} {\frac {(N_i +g_i -1)!}{{N_i}! {(g_i -1)!}}}$$
for ##spin-half## particles $$W= \prod_{i=1}^{n} {\frac {{g_i}!}{{N_i}! {(g_i -N_i)!}}}$$
Stirling's formula $$\ln {n!} = n \ln n - n$$
The Attempt at a Solution
for ##spin-integral## particles $$W={\frac {(N+N -1)!}{{N}! {(N -1)!}}}$$
Simplifying $$W={\frac {(2N -1)!}{{N}! {N!}}}$$
That is approximately $$W={\frac {(2N)!} {{{N}!}^2}}$$
Thus $$S_{spin-0}=k_B \ln{\frac {(2N)!} {{(N!)}^2}}$$
$$\Rightarrow S_{spin-0}=k_B {[\ln {{(2N)!}-\ln {(N!)}^2}]}$$
$$\Rightarrow S_{spin-0}=k_B {[(2N) \ln {(2N)}-(2N)-2\ln {{N}!}]}$$
$$\Rightarrow S_{spin-0}=k_B {[(2N) \ln {(2N)}-(2N)-2N\ln {N} + 2N]}$$
$$\Rightarrow S_{spin-0}=k_B {(2N)[ \ln {(2N)}-\ln {N}]}$$
$$\Rightarrow S_{spin-0}=k_B {(2N) \ln 2}$$for ##spin-half## particles $$W={\frac {N!}{{(2N)}! {(N -2N)!}}}$$
Which gives a ##negative## factorial at the denominator!
So, does this mean one cannot distribute ##2N## spin-half particles in ##N## states?
Which sounds right, because of the Pauli exclusion principle.
Anyone have any thought?