- #1
MrGandalf
- 30
- 0
I'm going to prove that if f and g are continuous functions, then so is fg.
We define [itex]fg \; :\; E \rightarrow \bb{F}[/itex] by
[itex](fg)(t) \;=\; f(t)g(t)[/itex] for all [itex]t \in E[/itex]
(F is an ordered field and E is a subset of F).
Proof
[tex]|(fg)(x) - (fg)(a)| = |f(x)g(x) - f(a)g(a)| =[/tex]
Add and subtract f(x)g(a)
[tex]|f(x)g(x) - f(x)g(a) \;+\; f(x)g(a) - f(a)g(a)| \leq [/tex]
We use the triangle inequality
[tex]\leq |f(x)g(x) - f(x)g(a)| \;+\; |f(x)g(a) - f(a)g(a)| = [/tex]
We factor out f(x) and g(a)
[tex]|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)|[/tex]
From the definition pf continuity we have
[itex]\delta_1[/itex] such that [itex]|f(x) - f(a)| < \frac{\epsilon}{2}[/itex] for [itex]|x-a|[/itex]
[itex]\delta_2[/itex] such that [itex]|g(x) - g(a)| < \frac{\epsilon}{2}[/itex] for [itex]|x-a|[/itex]
But we still have |f(x)| and |g(a)|.
From the definition, we can deduce [*] - This part I'm not really sure about.
[tex]|f(x) - f(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |f(x)| < \frac{\epsilon}{2} + |f(a)| [/tex]
[tex]|g(x) - g(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |g(a)| < \frac{\epsilon}{2} + |g(x)| [/tex]
And we can choose new delta-values:
[tex]\delta_3[/tex] such that [tex]|f(x) - f(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |f(a)|)}[/tex] for [tex]|x-a|[/tex]
[tex]\delta_4[/tex] such that [tex]|g(x) - g(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |g(x)|)}[/tex] for [tex]|x-a|[/tex]
In conclusion, we take [itex]\delta_5 = \min(\delta_3, \delta_4)[/itex]
And get:
[tex]|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)| <[/tex]
[tex](\frac{\epsilon}{2} + |f(a)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |f(a)|)}) + (\frac{\epsilon}{2} + |g(x)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |g(x)|)}) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon[/tex]
And the proof is concluded. Quad Erad Demonstrandum... if it is right, of course.
Hope it wasn't too long!
We define [itex]fg \; :\; E \rightarrow \bb{F}[/itex] by
[itex](fg)(t) \;=\; f(t)g(t)[/itex] for all [itex]t \in E[/itex]
(F is an ordered field and E is a subset of F).
Proof
[tex]|(fg)(x) - (fg)(a)| = |f(x)g(x) - f(a)g(a)| =[/tex]
Add and subtract f(x)g(a)
[tex]|f(x)g(x) - f(x)g(a) \;+\; f(x)g(a) - f(a)g(a)| \leq [/tex]
We use the triangle inequality
[tex]\leq |f(x)g(x) - f(x)g(a)| \;+\; |f(x)g(a) - f(a)g(a)| = [/tex]
We factor out f(x) and g(a)
[tex]|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)|[/tex]
From the definition pf continuity we have
[itex]\delta_1[/itex] such that [itex]|f(x) - f(a)| < \frac{\epsilon}{2}[/itex] for [itex]|x-a|[/itex]
[itex]\delta_2[/itex] such that [itex]|g(x) - g(a)| < \frac{\epsilon}{2}[/itex] for [itex]|x-a|[/itex]
But we still have |f(x)| and |g(a)|.
From the definition, we can deduce [*] - This part I'm not really sure about.
[tex]|f(x) - f(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |f(x)| < \frac{\epsilon}{2} + |f(a)| [/tex]
[tex]|g(x) - g(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |g(a)| < \frac{\epsilon}{2} + |g(x)| [/tex]
And we can choose new delta-values:
[tex]\delta_3[/tex] such that [tex]|f(x) - f(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |f(a)|)}[/tex] for [tex]|x-a|[/tex]
[tex]\delta_4[/tex] such that [tex]|g(x) - g(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |g(x)|)}[/tex] for [tex]|x-a|[/tex]
In conclusion, we take [itex]\delta_5 = \min(\delta_3, \delta_4)[/itex]
And get:
[tex]|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)| <[/tex]
[tex](\frac{\epsilon}{2} + |f(a)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |f(a)|)}) + (\frac{\epsilon}{2} + |g(x)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |g(x)|)}) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon[/tex]
And the proof is concluded. Quad Erad Demonstrandum... if it is right, of course.
Hope it wasn't too long!
Last edited: