- #1
reinloch
- 5
- 0
Homework Statement
proof this limit:
[itex]\lim_{x\rightarrow 1^+}\frac{1}{(x-1)(x-2)}=-∞[/itex]
Homework Equations
The Attempt at a Solution
So for every [itex]N < 0[/itex], I need to find a [itex]\delta > 0[/itex] such that
[itex]0 < x - 1 < \delta \Rightarrow \frac{1}{(x-1)(x-2)} < N[/itex]
Assuming [itex]0 < x - 1 < 1[/itex], I get [itex]-1 < x - 2 < 0[/itex], and [itex]-\frac{1}{x-2}>1[/itex].
Assuming [itex]0 < x - 1 < -\frac{1}{N}[/itex], I get [itex]-(x-1) > \frac{1}{N}[/itex], [itex]-\frac{1}{x-1} < N[/itex], and [itex]\left(-\frac{1}{x-1}\right)\left(-\frac{1}{x-2}\right) < N\left(-\frac{1}{x-2}\right)[/itex], but then I got stuck.