- #1
kahwawashay1
- 96
- 0
Prove that the limit as x->0 of [itex]\sqrt{\left|x\right|}[/itex] = 0
attempt:
[itex]\sqrt{\left|x\right|}[/itex] < [itex]\epsilon[/itex] when |x|<[itex]\delta[/itex]
-[itex]\epsilon[/itex] < [itex]\sqrt{\left|x\right|}[/itex] < [itex]\epsilon[/itex]
[itex]\left|x\right|[/itex] < [itex]\epsilon[/itex][itex]^{2}[/itex]
[itex]\delta[/itex]=[itex]\epsilon[/itex][itex]^{2}[/itex]
This seems to work...but I just ignored the negative epsilon since I can't square it in my inequality...I don't know if you are allowed to just ignore this?
attempt:
[itex]\sqrt{\left|x\right|}[/itex] < [itex]\epsilon[/itex] when |x|<[itex]\delta[/itex]
-[itex]\epsilon[/itex] < [itex]\sqrt{\left|x\right|}[/itex] < [itex]\epsilon[/itex]
[itex]\left|x\right|[/itex] < [itex]\epsilon[/itex][itex]^{2}[/itex]
[itex]\delta[/itex]=[itex]\epsilon[/itex][itex]^{2}[/itex]
This seems to work...but I just ignored the negative epsilon since I can't square it in my inequality...I don't know if you are allowed to just ignore this?