- #1
tmt1
- 234
- 0
I have this equality:
$$ (\ln\left({n}\right))^4 < {n}^{\frac{1}{4}} $$ where $ n > 1$
Can I derive a law from this such that
$$ (\ln\left({n}\right))^b < {n}^{\frac{1}{b}} $$ where $n > 1$ ?
$$ (\ln\left({n}\right))^4 < {n}^{\frac{1}{4}} $$ where $ n > 1$
Can I derive a law from this such that
$$ (\ln\left({n}\right))^b < {n}^{\frac{1}{b}} $$ where $n > 1$ ?