MHB Equation involving the inverse tangent function

AI Thread Summary
The discussion focuses on proving the equation $\arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}$ for all $x>0$. The user initially equates $\arctan{\dfrac{1}{x}}$ with $\arccot{x}$ and explores the relationships between these functions. They confirm that $\arctan{x} + \arccot{x} = \dfrac{\pi}{2}$ holds true for all real numbers, but encounter confusion when combining the two equations. A geometric interpretation using a right triangle illustrates that the angles $\alpha$ and $\beta$ are complementary, reinforcing the relationship between the inverse tangent and cotangent functions. The conclusion emphasizes that for $x>0$, the two functions are indeed complementary angles.
karseme
Messages
13
Reaction score
0
I need to prove that:

$ \arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}, \forall x>0$.

Now, I assumed $\arctan{\dfrac{1}{x}}=\arccot{x}$. So, I've tried to do this:

$\cot{y}=x \implies y=arccot{x} \\ \tan{y}=\dfrac{1}{\cot{y}}=\dfrac{1}{x} \implies y=\arctan{\dfrac{1}{x}} \\ \implies \arccot{x}=\arctan{\dfrac{1}{x}}$. I've tried to put in some numbers and it seems that it workes for every real number.

Also, $\tan{(\dfrac{\pi}{2}-y)}=\cot{y}=x \implies \dfrac{\pi}{2}-y=\arctan{x} \land y=\arccot{x} \\ \implies \arctan{x}+\arccot{x}=\dfrac{\pi}{2}$, which also works for every real number. But, why is it then when you plug in $\arccot{x}=\arctan{\dfrac{1}{x}}$ in the second equation, it doesn't work for every x. But, the first equation and the second equation work for every real number but their combination doesn't. I know that my approach wasn't that good anyway, but I didn't know what else to do to prove this.
 
Mathematics news on Phys.org
For $x>0$, $\arctan(x)$ and $\arctan\left(\frac1x\right)$ are complementary angles.
 
Hi karseme! ;)

Consider the following right triangle:
\begin{tikzpicture}[font=\large]
\draw[ultra thick, blue]
(0,0) node[above right,xshift=10] {$\alpha$} -- node[below] {$1$}
(4,0) -- node
{$x$}
(4,3) node[below left,yshift=-6] {$\beta$} -- cycle;
\draw[blue] (4,0) rectangle +(-0.3,0.3);
\end{tikzpicture}

From the definition of $\tan$ we have $\tan\alpha=\frac x 1$ and $\tan\beta=\frac 1 x$.
From the angle sum of a triangle we know that $\alpha + \beta=\frac\pi 2$.
Therefore $\arctan x + \arctan \frac 1x = \frac\pi 2$. :cool:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
2
Views
2K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Back
Top