- #1
Dustinsfl
- 2,281
- 5
Equation of a plane after a coordinate transformation. Not sure about the second part in regards to finding the plane in the new system.
The angles between the respective axes $O_{x_1'x_2'x_3'}$ and the $O_{x_1x_2x_3}$ Cartesian system are given by the table below
Determine the transformation matrix between the two sets of axes
$$
[A] = \begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
$$
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}
The angles between the respective axes $O_{x_1'x_2'x_3'}$ and the $O_{x_1x_2x_3}$ Cartesian system are given by the table below
\[x_1\] | \[x_2\] | \[x_3\] | |
\[x'_1\] | \[\frac{\pi}{4}\] | \[\frac{\pi}{2}\] | \[\frac{\pi}{4}\] |
\[x'_2\] | \[\frac{\pi}{3}\] | \[\frac{\pi}{4}\] | \[\frac{2\pi}{3}\] |
\[x'_3\] | \[\frac{2\pi}{3}\] | \[\frac{\pi}{4}\] | \[\frac{\pi}{3}\] |
Determine the transformation matrix between the two sets of axes
$$
[A] = \begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
$$
The matrix $[A]$ is the transformation matrix from the new coordinate system to the old.
The equation of the plane $x_1 + x_2 + x_3 = \frac{1}{\sqrt{2}}$ in its primed axes form, that is, in the form $b_1x_1' + b_2x_2' +b_3x_3' = b$.
\begin{alignat*}{3}
\begin{bmatrix}
x_1'\\
x_2'\\
x_3'
\end{bmatrix} & = &
\begin{bmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\
\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2}\\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2\\
x_3
\end{bmatrix}
\end{alignat*}
Last edited by a moderator: