- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $ABC$ be an equilateral triangle, and let $K$ be a point in its interior. Let the line $AK,\,BK,\,CK$ meet the sides of $BC,\,CA,\,AB$ in the points $A',\,B',\,C'$ respectively. Prove that
$A'B'\cdot B'C'\cdot C'A' \ge A'B\cdot B'C\cdot C'A$.
$A'B'\cdot B'C'\cdot C'A' \ge A'B\cdot B'C\cdot C'A$.