- #1
Opus_723
- 178
- 3
If I have a many-body Hamiltonian, and I choose a coordinate x with canonical momentum p, I can say that by the generalized equipartition theorem that
<p(dH/dx)> = -<p(dp/dt)> = 0
Since p and x are distinct phase space variables, and since by the Hamiltonian equations of motion the force (dp/dt) on coordinate x is equal to -dH/dx. So there is no correlation between a canonical momentum and its own rate of change, or the force acting on that coordinate.
On the other hand, if I imagine that my many body system is, for example, a heavy particle in a liquid or gas made of light particles, then there should be something like a drag force on the heavy particle. And a drag force is very obviously correlated with the momentum, with the force tending to be opposite the momentum. So it seems like <p(dp/dt)> should be nonzero.
Another way to see this is to simply look at the correlation in a typical Langevin equation.
So how do I reconcile the correlation between momentum and force at the more macroscopic level where we see 'drag' and the equipartition theorem telling me there should be no such correlation between a canonical momentum and its own rate of change?
<p(dH/dx)> = -<p(dp/dt)> = 0
Since p and x are distinct phase space variables, and since by the Hamiltonian equations of motion the force (dp/dt) on coordinate x is equal to -dH/dx. So there is no correlation between a canonical momentum and its own rate of change, or the force acting on that coordinate.
On the other hand, if I imagine that my many body system is, for example, a heavy particle in a liquid or gas made of light particles, then there should be something like a drag force on the heavy particle. And a drag force is very obviously correlated with the momentum, with the force tending to be opposite the momentum. So it seems like <p(dp/dt)> should be nonzero.
Another way to see this is to simply look at the correlation in a typical Langevin equation.
So how do I reconcile the correlation between momentum and force at the more macroscopic level where we see 'drag' and the equipartition theorem telling me there should be no such correlation between a canonical momentum and its own rate of change?