- #1
Klungo
- 136
- 1
Is it true that the following definitions of completeness are equivalent?
[itex]\mbox{For theory } \Sigma \mbox{ and for any sentence } A[/itex].
[itex]\mbox{ Either } \Sigma \vdash A \mbox{ or } \Sigma \vdash \lnot A [/itex]
and
[itex]\mbox{ Either } A \in \Sigma \mbox{ or } (\lnot A) \in \Sigma[/itex].
(The second clearly implies the first.)
[itex]\mbox{For theory } \Sigma \mbox{ and for any sentence } A[/itex].
[itex]\mbox{ Either } \Sigma \vdash A \mbox{ or } \Sigma \vdash \lnot A [/itex]
and
[itex]\mbox{ Either } A \in \Sigma \mbox{ or } (\lnot A) \in \Sigma[/itex].
(The second clearly implies the first.)