MHB Equivalent Norms: Proving $\|A\| \leq \|A\|_{Eucl} \leq \sqrt{n}\|A\|$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Equivalent
Click For Summary
The discussion focuses on proving the inequalities between different norms of a real matrix \( A \). The first inequality, \( \|A\| \leq \|A\|_{\text{Eucl}} \), is established using the Cauchy–Schwarz inequality. Participants seek guidance on proving the second inequality, \( \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\| \). A suggestion is made to use the trace of \( A^TA \) to connect the Euclidean norm to the operator norm. The conversation concludes with participants confirming the validity of their approach and expressing gratitude for the assistance.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:

Since $\displaystyle{(Ax)_i=\sum_{j=1}^na_{i,j}x_j}$, we get $\displaystyle{\|Ax\|_2^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}x_j|\right )^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2}$.

From the Cauchy–Schwarz inequality we get \begin{equation*}\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\left (\sum_{j=1}^n|x_j|^2\right )=\left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\|x\|_2^2\end{equation*}

Sp we get\begin{equation*}\|Ax\|_2^2=\sum_{i=1}^n\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2\|x\|_2^2=\|A\|_{\text{Eucl}}^2\,\|x\|_2^2 \end{equation*}

Therefore we have that \begin{equation*}\|Ax\|_2\leq \|A\|_{\text{Eucl}}\,\|x\|_2\Rightarrow \sup_{\|x\|_2\leq 1}\|Ax\|_2\leq \sup_{\|x\|_2\leq 1}\|A\|_{\text{Eucl}}\,\|x\|_2=\|A\|_{\text{Eucl}}\end{equation*}

From that it implies that $\|A\|\leq \|A\|_{\text{Eucl}}$. Is everything correct? (Wondering)
Could you give me a hint for the second inequality? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:
.
.
.
Is everything correct? (Wondering)
Yes!

mathmari said:
Could you give me a hint for the second inequality? (Wondering)
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).
 
Opalg said:
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).

What do we get from that? I got stuck right now. (Wondering) Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)
 
Hi mathmari,

mathmari said:
Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)

This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$
 
Last edited:
GJA said:
This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$

Ah I see! Thank you so much! (Yes)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
834
  • · Replies 8 ·
Replies
8
Views
2K