MHB Equlateral Triangle: Prove $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
To prove that a triangle is equilateral if and only if \( ab \cos \gamma = ac \cos \beta = bc \cos \alpha \), two methods are suggested. The first method involves using the cosine values derived from the triangle's angles and applying them to the sides. The second method also utilizes cosine values but approaches the proof from a different angle, reinforcing the relationship among the sides and angles. The discussion emphasizes the equivalence of these conditions in establishing the equilateral nature of the triangle. Overall, the proofs demonstrate the fundamental relationship between the sides and angles in an equilateral triangle.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.
 
Mathematics news on Phys.org
lfdahl said:
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.

Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
 
kaliprasad said:
Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
Well done, kaliprasad! Thankyou for your participation!(Cool)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top