- #1
AxiomOfChoice
- 533
- 1
Suppose we know the perturbation series
[tex]
E = E(\epsilon) = E_0 + \epsilon E_1 + \epsilon^2 E_2 + \ldots
[/tex]
converges, where [itex]E_0[/itex] is a discrete eigenvalue of [itex]H_0[/itex] and we are considering a Hamiltonian [itex]H = H_0 + \epsilon H_1[/itex]. Does this mean that we know
[tex]
E - E_0 = O(\epsilon)
[/tex]
as [itex]\epsilon \to 0[/itex] in the precise sense that we know there exists a [itex]\delta > 0[/itex] and a [itex]C > 0[/itex] such that if [itex]|\epsilon| < \delta[/itex], then [itex]|E - E_0| \leq C|\epsilon|[/itex]?
[tex]
E = E(\epsilon) = E_0 + \epsilon E_1 + \epsilon^2 E_2 + \ldots
[/tex]
converges, where [itex]E_0[/itex] is a discrete eigenvalue of [itex]H_0[/itex] and we are considering a Hamiltonian [itex]H = H_0 + \epsilon H_1[/itex]. Does this mean that we know
[tex]
E - E_0 = O(\epsilon)
[/tex]
as [itex]\epsilon \to 0[/itex] in the precise sense that we know there exists a [itex]\delta > 0[/itex] and a [itex]C > 0[/itex] such that if [itex]|\epsilon| < \delta[/itex], then [itex]|E - E_0| \leq C|\epsilon|[/itex]?