- #1
Joeseye
- 4
- 0
1. Problem
"Estimate the flux of neutrinos passing through your body per second if the present energy density of neutrinos from the Big Bang is 0.2 MeV/m3. Assume that you are a standard size covering 0.01 m2".
nv = Uv(T) / <Ev>
I've assumed that the neutrinos have a temperature of 1.95 K. Now I'm not sure whether to presume that the neutrinos are relativistic (hence, zero mass and velocity of c) or non-relativistic (i.e. mv < 1 eV), since the question does not specify. Although I believe the Tv = 1.95 K value comes from assuming neutrinos are massless (I think).
I've attempted both and have different answers (although I doubt whether they are correct). Regardless, I've not had much success converting the neutrino density to a flux density. I assume that the neutrinos are traveling in all directions with the same velocity.
"Estimate the flux of neutrinos passing through your body per second if the present energy density of neutrinos from the Big Bang is 0.2 MeV/m3. Assume that you are a standard size covering 0.01 m2".
Homework Equations
nv = Uv(T) / <Ev>
The Attempt at a Solution
I've assumed that the neutrinos have a temperature of 1.95 K. Now I'm not sure whether to presume that the neutrinos are relativistic (hence, zero mass and velocity of c) or non-relativistic (i.e. mv < 1 eV), since the question does not specify. Although I believe the Tv = 1.95 K value comes from assuming neutrinos are massless (I think).
I've attempted both and have different answers (although I doubt whether they are correct). Regardless, I've not had much success converting the neutrino density to a flux density. I assume that the neutrinos are traveling in all directions with the same velocity.
Last edited: