- #1
twoflower
- 368
- 0
Homework Statement
Let's have random value X defined by its density function:
[tex]
f(x; \beta) = \beta^2x \mbox{e}^{-\beta x}
[/tex]
where [itex]\beta > 0[/itex] for [itex]x > 0[/itex] and [itex]f(x) = 0[/itex] otherwise.
Expected value of X is [itex]EX = \frac{2}{\beta}[/itex] and variance is [itex]\mbox{var } X = \frac{2}{\beta^2}.[/itex]
Next, suppose we have random sample [itex]X_1, X_2, ..., X_n[/itex] from distribution defined by the given density function.
Infer estimate of the parameter [itex]\beta[/itex] using the method of maximum likelihood.
The Attempt at a Solution
[tex]
L(\beta; X) = \prod_{i=1}^{n} f(X_i; \beta)
[/tex]
[tex]
\mbox{lik}(\beta; X) = \log L(\beta; X) = \sum \log f(X_i; \beta) = ... = 2n\log \beta + \sum \left( \log X_i - \beta X_i\right)
[/tex]
Now we'll find derivative of [itex]\mbox{lik}(\beta; X)[/itex] and find point where it's equal to zero (to find maximum of likelihood function).
[tex]
\frac{\partial \mbox{lik} (\beta; X)}{\partial \beta} = \frac{2n}{\beta} - \sum X_i
[/tex]
[tex]
\frac{2n}{\widehat{\beta}} - \sum X_i = 0
[/tex]
[tex]
\widehat{\beta} = \frac{2n}{\sum X_i} = \frac{2}{\overline{X_{n}}}
[/tex]
So [itex]\widehat{\beta}[/itex] is estimate of [itex]\beta[/itex].
Next task is the following:
Infer asymptotical distribution of [itex]\widehat{\beta}[/itex]. Hint: Use Fisher information [itex]\mathcal{F}_n = -\mbox{E} \frac{
\partial^2 \mbox{lik}(\beta) }{\partial \beta^2}[/itex].
Using infered asymptotical distribution [itex]\widehat{\beta} \sim \mathbf{N}(\beta, \mathcal{F}_{n}^{-1})[/itex], try to designate a confidence
interval for parameter [itex]\beta[/itex] (possible unknown parameters replace with their estimates).
With this I'm having little troubles. I compute Fisher information:
[tex]
\mathcal{F}_n = -\mbox{E} \frac{ \partial^2 \mbox{lik}(\beta) }{\partial \beta^2} = -\mbox{E} \left( -\frac{2n}{\beta^2} \right)
[/tex]
And now what? Can I continue like this?
[tex]
\mathcal{F}_n = -\mbox{E} \left( -\frac{2n}{\beta^2} \right) = \frac{2n}{\beta^2}
[/tex]
or am I supposed to expand it and continue like this?
[tex]
\mathcal{F}_n = -\mbox{E} \left( -\frac{2n}{\beta^2} \right) = \mbox{E} \left{ \frac{2n}{\widehat{\beta}}^2} \right} = \mbox{E} \left{
\frac{2n\left( \overline{X_n}^2 \right)}{4} \right} = \mbox{E} \left{ \frac{1}{2} n \left( \overline{X_n}^2 \right) \right}
[/tex]
I don't know how to continue..