- #1
craigthone
- 59
- 1
This is an exercise from Hartman's lecture 6th. Using the Euclidean method to calculate the BTZ black hole mass entropy. The BTZ metric is given by
$$ ds^2=(r^2-8M)d\tau^2 +\frac{dr^2}{r^2-8M}+r^2d\phi^2$$
and ##\tau \sim \tau+\beta, \beta=\frac{\pi}{\sqrt{2M}}##.
Then we calculate the Euclidean action
$$ S_E=-\frac{1}{16π}\int_M \sqrt{g}(R+2)-\frac {1} {8π} \int_{\partial M} \sqrt { h } K+\frac {a} {8π} \int_{\partial M} \sqrt { h } $$
For the BTZ black hole solution, we can calculate
$$\sqrt{g}=r, \sqrt{h}=r \sqrt{r^2-8M}$$
$$ n_{\alpha}=(r^2-8M)^{-1/2}\partial _{\alpha}r$$
$$R=-6, K=\frac{\sqrt{r^2-8M}}{r}+\frac{r}{\sqrt{r^2-8M}}$$
And then we have
$$ -\frac{1}{16π}\int_M \sqrt{g}(R+2)=\frac{\beta}{4}r^2_0$$
$$-\frac {1} {8π} \int_{\partial M} \sqrt { h } K=-\frac{\beta}{4}[2r^2_0 -8M ] $$
$$\frac {a} {8π} \int_{\partial M} \sqrt { h }=a \frac{\beta}{4}[2r^2_0 -4M ] $$
where the boundary is at ##r=r_0##
In order to cancel the divergent part of the action, we take ##a=1##.
Then the Euclidean action is
$$S_E=\beta M=\frac{\pi^2}{2\beta}$$
The black hole energy is $$E=\frac{\partial}{\partial \beta}S_E=-M $$
This is awkard since we know that ##E=M## for the black hole.
Who can help me out. Thanks in advanced.
$$ ds^2=(r^2-8M)d\tau^2 +\frac{dr^2}{r^2-8M}+r^2d\phi^2$$
and ##\tau \sim \tau+\beta, \beta=\frac{\pi}{\sqrt{2M}}##.
Then we calculate the Euclidean action
$$ S_E=-\frac{1}{16π}\int_M \sqrt{g}(R+2)-\frac {1} {8π} \int_{\partial M} \sqrt { h } K+\frac {a} {8π} \int_{\partial M} \sqrt { h } $$
For the BTZ black hole solution, we can calculate
$$\sqrt{g}=r, \sqrt{h}=r \sqrt{r^2-8M}$$
$$ n_{\alpha}=(r^2-8M)^{-1/2}\partial _{\alpha}r$$
$$R=-6, K=\frac{\sqrt{r^2-8M}}{r}+\frac{r}{\sqrt{r^2-8M}}$$
And then we have
$$ -\frac{1}{16π}\int_M \sqrt{g}(R+2)=\frac{\beta}{4}r^2_0$$
$$-\frac {1} {8π} \int_{\partial M} \sqrt { h } K=-\frac{\beta}{4}[2r^2_0 -8M ] $$
$$\frac {a} {8π} \int_{\partial M} \sqrt { h }=a \frac{\beta}{4}[2r^2_0 -4M ] $$
where the boundary is at ##r=r_0##
In order to cancel the divergent part of the action, we take ##a=1##.
Then the Euclidean action is
$$S_E=\beta M=\frac{\pi^2}{2\beta}$$
The black hole energy is $$E=\frac{\partial}{\partial \beta}S_E=-M $$
This is awkard since we know that ##E=M## for the black hole.
Who can help me out. Thanks in advanced.