- #1
e2m2a
- 359
- 14
If anyone side of a triangle cannot be derived from Euclid’s formula for pythagorean triples, is this sufficient to prove that a right triangle with integer sides is impossible?
For example, let's take the leg expressed by k2mn in Euclid's formula,, where k,m,n, are integers. If one of the sides of a triangle is expressed by prime and non-integer factors that do not conform to k2mn, is this sufficient to prove that the other remaining sides will never form a right triangle with integer sides?
For example, let's take the leg expressed by k2mn in Euclid's formula,, where k,m,n, are integers. If one of the sides of a triangle is expressed by prime and non-integer factors that do not conform to k2mn, is this sufficient to prove that the other remaining sides will never form a right triangle with integer sides?