- #1
Black Integra
- 56
- 0
I want to prove that Euler Lagrange equation and Einstein Field equation (and Geodesic equation) are the same thing so I made this calculation.
First, I modified Energy-momentum Tensor (talking about 2 dimension; space+time) :
[itex]T_{\mu\nu}=\begin{pmatrix} \nabla E& \dot{E}\\ \nabla p & \dot{p}\end{pmatrix}=\begin{pmatrix} \nabla K& \dot{K}\\ \nabla p & \dot{p}\end{pmatrix}+\begin{pmatrix} \nabla V& \dot{V}\\ 0 & 0\end{pmatrix}=K_{\mu\nu}+V_{\mu\nu}[/itex]
for kinetic energy K and potential energy V
Then, I defined new tensor that I call Lagrangian-momentum Tensor where
[itex]L_{\mu\nu}=\begin{pmatrix} \nabla L& \dot{L}\\ \nabla p & \dot{p}\end{pmatrix}=K_{\mu\nu}-V_{\mu\nu}=T_{\mu\nu}-2V_{\mu\nu}[/itex]
Substitute this for [itex]T_{\mu\nu}[/itex] in Einstein Field Equation, we have
[a]... [itex]\frac{1}{\kappa}G_{\mu\nu}-2V_{\mu v}=L_{\mu\nu}[/itex]
for [itex]\kappa=8\pi G[/itex] and set [itex]c=1[/itex]
Now, consider Euler Lagrange Equation
[itex]\frac{\partial}{\partial x}L - \frac{\partial}{\partial t}\frac{\partial}{\partial \dot{x}}L = 0[/itex]
Or written in Lagrangian Tensor form :
[itex]L_{00} - L_{11} = 0 \rightarrow \epsilon^{\mu\nu}L_{\mu\nu}=0; \epsilon^{\mu\nu} = \begin{pmatrix} 1& 0\\ 0 & -1\end{pmatrix}[/itex]
apply this to [a], we have
[itex]\epsilon^{\mu\nu}G_{\mu\nu}=2\kappa\nabla V[/itex]
This is very beautiful equation but I'm not sure that I'm doing it right. So, am I doing it right?
First, I modified Energy-momentum Tensor (talking about 2 dimension; space+time) :
[itex]T_{\mu\nu}=\begin{pmatrix} \nabla E& \dot{E}\\ \nabla p & \dot{p}\end{pmatrix}=\begin{pmatrix} \nabla K& \dot{K}\\ \nabla p & \dot{p}\end{pmatrix}+\begin{pmatrix} \nabla V& \dot{V}\\ 0 & 0\end{pmatrix}=K_{\mu\nu}+V_{\mu\nu}[/itex]
for kinetic energy K and potential energy V
Then, I defined new tensor that I call Lagrangian-momentum Tensor where
[itex]L_{\mu\nu}=\begin{pmatrix} \nabla L& \dot{L}\\ \nabla p & \dot{p}\end{pmatrix}=K_{\mu\nu}-V_{\mu\nu}=T_{\mu\nu}-2V_{\mu\nu}[/itex]
Substitute this for [itex]T_{\mu\nu}[/itex] in Einstein Field Equation, we have
[a]... [itex]\frac{1}{\kappa}G_{\mu\nu}-2V_{\mu v}=L_{\mu\nu}[/itex]
for [itex]\kappa=8\pi G[/itex] and set [itex]c=1[/itex]
Now, consider Euler Lagrange Equation
[itex]\frac{\partial}{\partial x}L - \frac{\partial}{\partial t}\frac{\partial}{\partial \dot{x}}L = 0[/itex]
Or written in Lagrangian Tensor form :
[itex]L_{00} - L_{11} = 0 \rightarrow \epsilon^{\mu\nu}L_{\mu\nu}=0; \epsilon^{\mu\nu} = \begin{pmatrix} 1& 0\\ 0 & -1\end{pmatrix}[/itex]
apply this to [a], we have
[itex]\epsilon^{\mu\nu}G_{\mu\nu}=2\kappa\nabla V[/itex]
This is very beautiful equation but I'm not sure that I'm doing it right. So, am I doing it right?