- #1
EoinBrennan
- 12
- 0
Homework Statement
Hi. I am attempting to get the Euler-Lagrange equations of motion for the following Lagrangian:
L(ψ[itex]^{μ}[/itex]) = -[itex]\frac{1}{2}[/itex] ∂[itex]_{μ}[/itex] ψ[itex]^{\nu}[/itex] ∂[itex]^{μ}[/itex] ψ[itex]_{\nu}[/itex] + [itex]\frac{1}{2}[/itex] ∂[itex]_{μ}[/itex] ψ[itex]^{\mu}[/itex] ∂[itex]_{\nu}[/itex] ψ[itex]^{\nu}[/itex] + [itex]\frac{m^{2}}{2}[/itex] ψ[itex]_{\nu}[/itex] ψ[itex]^{\nu}[/itex]
Homework Equations
So, I want to get [itex]\frac{∂}{∂(∂_{\mu}ψ)}[/itex] (L). My issue is that I'm not sure how this interacts with the [itex]∂^{\mu}[/itex] term.
The Attempt at a Solution
I think that it's probably one of these things.
Either [itex]∂^{\mu} ψ_{\nu}[/itex] is treated as independent to [itex]∂_{\mu} ψ^{\nu}[/itex] , i.e. [itex]\frac{∂}{∂(∂_{\mu}ψ)}[/itex] ([itex]∂^{\mu} ψ_{\nu} a[/itex]) = 0, or it is derived as -1 times the derivative of [itex]∂_{\mu} ψ^{\nu}[/itex], i.e. [itex]\frac{∂}{∂(∂_{\mu}ψ)}[/itex] ([itex]∂^{\mu} ψ_{\nu} a[/itex]) = -a.
Any help on how to get this Euler-Lagrange would be really appreciated.
Cheers.
Last edited: