- #1
Pentaquark5
- 17
- 2
Homework Statement
The Lagrange Function corresponding to a geodesic is $$\mathcal{L}(x^\mu,\dot{x}^\nu)=\frac{1}{2}g_{\alpha \beta}(x^\mu)\dot{x}^\alpha \dot{x}^\beta$$
Calculate the Euler-Lagrange equations
Homework Equations
The Euler Lagrange equations are $$\frac{\mathrm{d}}{\mathrm{d}s} \left( \frac{\partial \mathcal{L}}{\partial \dot{x}^\mu} \right) =\frac{\partial \mathcal{L}}{\partial x^\mu}$$
The solution should be
$$\frac{\mathrm{d}^2 x^\mu}{\mathrm{d}s^2}+\Gamma^\mu_{\;\;\alpha \beta} \frac{\mathrm{d}x^\alpha}{\mathrm{d}s} \frac{\mathrm{d}x^\beta}{\mathrm{d}s}=0$$
The Attempt at a Solution
Calculate LHS:
$$\frac{\partial \mathcal{L}}{\partial \dot{x}^\mu}=\frac{1}{2}\dot{x}^\beta (g_{\mu\beta}+g_{\beta\mu})=\dot{x}^\beta g_{\mu \beta}$$
$$\frac{\mathrm{d}}{\mathrm{d}s} \left( \frac{\partial \mathcal{L}}{\partial \dot{x}^\mu} \right)=\frac{\mathrm{d}}{\mathrm{d}s} \left(\dot{x}^\beta g_{\mu \beta}\right)=\ddot{x}^\beta g_{\mu\beta}$$
Calculate RHS:
$$\frac{\partial \mathcal{L}}{\partial x^\mu}=\frac{1}{2} \partial_m g_{\alpha \beta}(x^\mu)\dot{x}^\alpha\dot{x}^\beta$$Equating and multiplying with ##g^{kl}##:
$$ \ddot{x}^\beta=\frac{1}{2} g^{\mu \beta} \partial_m g_{\alpha \beta}(x^\mu)\dot{x}^\alpha\dot{x}^\beta $$This kind of looks like the definition of the Christoffel Symbol that I need, however two derivations of the metric are missing. Where did I go wrong?
Thanks