- #1
spaghetti3451
- 1,344
- 34
Homework Statement
Euler's equations can be written using vector calculus as
##\displaystyle{\frac{\partial v_{i}}{\partial t}+v^{j}\left(\frac{\partial v_{i}}{\partial x^{j}}\right) = -\left(\frac{1}{\rho}\right)\frac{\partial p}{\partial x^{i}}+f_{i}}.##
Euler's equations can also be written using differential forms as
##\displaystyle{\mathcal{L}_{{\bf{v}}+\partial / \partial t}(\nu) = \textbf{d} \left\{\frac{1}{2}||{\bf{v}}||^{2}+\phi-\int\frac{dp}{\rho}\right\}}##
Under the assumption that ##f_{i} = \text{grad}_{i}\phi##, that ##p=p(\rho)## and that ##\nu## is the ##1##-form with components ##v_i##, how can you prove that the two formulations above are equivalent?
Homework Equations
The Attempt at a Solution
##\displaystyle{\frac{\partial v_{i}}{\partial t}+v^{j}\left(\frac{\partial v_{i}}{\partial x^{j}}\right) = -\left(\frac{1}{\rho}\right)\frac{\partial p}{\partial x^{i}}+f_{i}}##
##\displaystyle{\frac{\partial v_{i}}{\partial t}+\frac{\partial}{\partial x^{j}}\left(v^{j}v_{i}\right)-v_{i}\frac{\partial v^{j}}{\partial x^{j}} = \text{grad}_{i}\ \left(-\int\frac{dp}{\rho}\right)+\text{grad}_{i}\ \phi}##
##\displaystyle{\frac{\partial v_{i}}{\partial t}+\frac{\partial}{\partial x^{j}}\left(v^{j}v_{i}\right) = v_{i}\frac{\partial v^{j}}{\partial x^{j}}+\text{grad}_{i}\ \left(-\int\frac{dp}{\rho}\right)+\text{grad}_{i}\ \phi}##
##\text{I have to fill up this missing line}##
##\displaystyle{\frac{\partial}{\partial x^{j}}\left(v^{j}v_{i}\right) + \frac{\partial v_{i}}{\partial t} = \text{grad}_{i}\left(\frac{1}{2}||{\bf{v}}||^{2}\right)+\text{grad}_{i}\ \left(-\int\frac{dp}{\rho}\right)+\text{grad}_{i}\ \phi}##
##\displaystyle{\frac{\partial\nu}{\partial t}+\mathcal{L}_{\bf{v}}(\nu) = \textbf{d}\left\{\frac{1}{2}||{\bf{v}}||^{2}+\phi-\int\frac{dp}{\rho}\right\}}##
##\displaystyle{\mathcal{L}_{{\bf{v}}+\partial / \partial t}(\nu) = \textbf{d} \left\{\frac{1}{2}||{\bf{v}}||^{2}+\phi-\int\frac{dp}{\rho}\right\}}##