- #1
Karol
- 1,380
- 22
Can the Euler approximation method be used to solve higher order DE?
I have ##\ddot x=\omega^2 x## which i rewrite as ##y''=\omega^2y##. initial conditions y(0)=0, y'(0)=1.
The Euler method: ##y_{n+1}=y_n+h\cdot y'_n##. i use this to make:
$$y''_{n+1}=y'_n+h\cdot y''_n~~\rightarrow~~\omega^2y_{n+1}=y'_n+h\omega^2 y_n$$
$$\omega^2(y_n+hy'_n)=y'_n+h\omega^2 y_n$$
$$\rightarrow~y'_n=\left[ \frac{\omega^2(1-h)}{1-\omega^2h} \right]y_n$$
But this contradicts the initial condition y'(0)=1, after i substitute y(0)=0 in the formula i found.
I have ##\ddot x=\omega^2 x## which i rewrite as ##y''=\omega^2y##. initial conditions y(0)=0, y'(0)=1.
The Euler method: ##y_{n+1}=y_n+h\cdot y'_n##. i use this to make:
$$y''_{n+1}=y'_n+h\cdot y''_n~~\rightarrow~~\omega^2y_{n+1}=y'_n+h\omega^2 y_n$$
$$\omega^2(y_n+hy'_n)=y'_n+h\omega^2 y_n$$
$$\rightarrow~y'_n=\left[ \frac{\omega^2(1-h)}{1-\omega^2h} \right]y_n$$
But this contradicts the initial condition y'(0)=1, after i substitute y(0)=0 in the formula i found.