MHB Evaluate 3/7 r + 5/8 s when r = 14 and s = 8

  • Thread starter Thread starter bobisaka
  • Start date Start date
AI Thread Summary
To evaluate the expression 3/7 r + 5/8 s with r = 14 and s = 8, the correct approach is to treat it as (3/7) * r + (5/8) * s. This means calculating (3/7) * 14, which simplifies to 6, and (5/8) * 8, which equals 5. The final result is 6 + 5, totaling 11. The confusion arose from misinterpreting the notation, where spaces indicate multiplication rather than division. Proper notation is essential to avoid ambiguity in mathematical expressions.
bobisaka
Messages
3
Reaction score
0
Hi all,

I'm currently on khan academy and am stuck at solving the following question. I try to use the 'multiply fraction by whole number' solution, however the correct solution is different. What is the correct way to solving this?

3/7 r + 5/8 s when r = 14 and s = 8

The way i solve it leads me to: 3/98 + 5/8
(using this process 3/7 * 14/1 = 3/7 * 1/14 = 3/98 )
However the correct solution is: 3/7(14) + 5/8(8)
 
Mathematics news on Phys.org
Hello, and welcome to the forum.

bobisaka said:
using this process 3/7 * 14/1 = 3/7 * 1/14 = 3/98
You cannot simply change 14/1 to 1/14.

When you have a sequence of multiplications and divisions with no parentheses, they should be evaluated left-to-right. So $3/7r$ means $(3/7)\cdot r=3r/7$. Therefore,
\[
\frac37\cdot\frac{14}{1}+\frac58\cdot\frac81=3\cdot2+5=11.
\]

Edit: In fact $3/7r$ does look confusing and I understand people who take it for $3/(7r)$. Therefore, such notation should be avoided by using fractions like $$\frac37\cdot r$$ or parentheses. Nevertheless, this does not change the rule: a sequence of multiplications and divisions is evaluated left-to-right.
 
bobisaka said:
Hi all,

I'm currently on khan academy and am stuck at solving the following question. I try to use the 'multiply fraction by whole number' solution, however the correct solution is different. What is the correct way to solving this?

3/7 r + 5/8 s when r = 14 and s = 8
Notice the space between the "7" and the "r" and the space between the "8" and the "s". That indicates that this is the fraction 3/7 times the number r and the fraction 5/8 times the number s. With r= 14, 3/7 times 14 is the same as \frac{3}{7}\frac{14}{1}= \frac{42}{7}= 6 or \frac{3}{7}14= 3\frac{14}{7}= 3(2)= 6. And with s= 8, 5/8 times 8 is \frac{5}{8}8= 5\frac{8}{8}. The result is 6+ 5= 11.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> The way i solve it leads me to: 3/98 + 5/8<br /> (using this process 3/7 * 14/1 = 3/7 * 1/14 = 3/98 ) </div> </div> </blockquote> That is peculiar! I had thought you were interpreting &quot;3/7 r&quot; as &quot;3/7r&quot; where there is no space and so means \frac{3}{7r} (which is why writing fractions &quot;in line&quot; as &quot;3/7&quot; rather that &quot;\frac{3}{7}&quot; tends to be ambiguous). But why in the world would you think that &quot;<div style="text-align: left"><span style="font-family: 'Verdana'">3/7 * 14/1 = 3/7 * 1/14&quot;? <b>Multiplying</b> by a/b is NOT <b>multiplying</b> by b/a because a/b and b/a are not the same thing. Perhaps you are remembering a garbled form of &quot;to <b>divide</b> by a fraction invert and <b>multiply</b>. That is \frac{a}{b}\div \frac{c}{d}= \frac{a}{g}\cdot\frac{d}{c}. But that is changing from <b>division</b> to <b>multiplication</b>.</span>&#8203;</div><span style="font-family: 'Verdana'"><br /> However the correct solution is: 3/7(14) + 5/8(8)[/QUOTE]</span>
 
Hi all,

Thanks for the feedback. You stand correct in that I got confused with dividing fraction by whole number.

That clears everything. Thank you.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top