- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b,\,c$ be real numbers such that
$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and
$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.
Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.
$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and
$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.
Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.