Evaluate (a²+b²+c²)/(ab+bc+ca)

  • MHB
  • Thread starter anemone
  • Start date
In summary, the conversation discusses real numbers $a,\,b,\,c$ that satisfy certain equations and inequalities. The task is to evaluate the expression $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.
 
Mathematics news on Phys.org
  • #2
anemone said:
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.

Hello.

[tex]a^3c+b^3a+c^3b=a^3b+b^3c+c^3a[/tex]

[tex]c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0[/tex]

[tex]c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0[/tex]

To divide (a-b):

[tex]c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0[/tex]

[tex](a^3-c^3)-(a-c)(a^2+ab+b^2)=0[/tex]

To divide (a-c):

[tex](a^2+ac+c^2)-(a^2+ab+b^2)=0[/tex]

[tex]ac+c^2-ab-b^2=0[/tex]

[tex]a(c-b)+(c^2-b^2)=0[/tex]

To divide (c-b):

[tex]a+b+c=0[/tex]

[tex](a+b+c)^2=0[/tex]

[tex]a^2+b^2+c^2=-2(ab+ac+bc)[/tex]

[tex]\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2[/tex]

Regards.
 
  • #3
mente oscura said:
Hello.

[tex]a^3c+b^3a+c^3b=a^3b+b^3c+c^3a[/tex]

[tex]c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0[/tex]

[tex]c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0[/tex]

To divide (a-b):

[tex]c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0[/tex]

[tex](a^3-c^3)-(a-c)(a^2+ab+b^2)=0[/tex]

To divide (a-c):

[tex](a^2+ac+c^2)-(a^2+ab+b^2)=0[/tex]

[tex]ac+c^2-ab-b^2=0[/tex]

[tex]a(c-b)+(c^2-b^2)=0[/tex]

To divide (c-b):

[tex]a+b+c=0[/tex]

[tex](a+b+c)^2=0[/tex]

[tex]a^2+b^2+c^2=-2(ab+ac+bc)[/tex]

[tex]\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2[/tex]

Regards.

Well done, mente oscura...and thanks for participating! :)
 

FAQ: Evaluate (a²+b²+c²)/(ab+bc+ca)

What is the formula for evaluating (a²+b²+c²)/(ab+bc+ca)?

The formula for evaluating (a²+b²+c²)/(ab+bc+ca) is (a²+b²+c²)/(ab+bc+ca). It cannot be simplified any further.

What do a, b, and c represent in the expression (a²+b²+c²)/(ab+bc+ca)?

In this expression, a, b, and c represent variables that can take on any numerical value. They are used to represent unknown quantities in algebraic equations.

What does the value of (a²+b²+c²)/(ab+bc+ca) represent?

The value of (a²+b²+c²)/(ab+bc+ca) represents the ratio between the sum of the squares of a, b, and c, and the sum of their products. It is often used in geometry and physics to calculate the relationships between sides and angles of triangles.

How can the expression (a²+b²+c²)/(ab+bc+ca) be simplified?

The expression (a²+b²+c²)/(ab+bc+ca) cannot be simplified any further. However, it can be written in different forms such as (a/b + b/c + c/a) or (a/c + b/a + c/b).

What is the significance of evaluating (a²+b²+c²)/(ab+bc+ca) in mathematics and science?

Evaluating (a²+b²+c²)/(ab+bc+ca) is important in mathematics and science because it allows for the calculation of important geometric and physical relationships. It is also a fundamental concept in algebra and can help solve complex equations and problems involving variables.

Back
Top