Evaluate $b_1^2+5b_2^2$ Given $a_1^2+5a_2^2=10$

  • MHB
  • Thread starter anemone
  • Start date
In summary, the given equations $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5,$ and $a_1b_1+5a_2b_2=\sqrt{105}$ can be used to evaluate the expression $b_1^2+5b_2^2$ for $a_1,\,a_2,\,b_1,\,b_2\in R$. Using the above "identity" can simplify the solution process.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.
 
Mathematics news on Phys.org
  • #2
anemone said:
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.

Hello.

[tex]x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S[/tex]

[tex]x^2+5y^2=10[/tex]. (p1)

[tex]yz-xk=5[/tex]. (p2)

[tex]xz+5yk= \sqrt{105}[/tex]. (p3)

[tex](x^2+5y^2)(z^2+5k^2)=10S[/tex]. (pS)

[tex]y^2z^2+x^2k^2-2xyzk=25[/tex]. Square (p2). (p4)

[tex]5y^2z^2+5x^2k^2-10xyzk=125[/tex]. (p4)*5. (p5)

[tex]x^2z^2+25y^2k^2+10xyzk=105[/tex]. Square (p3). (p6)

[tex]5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230[/tex]. (p5)+(p6). (p7)

[tex](x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230[/tex]

[tex]S=z^2+5k^2=23[/tex]

[tex]b_1^2+5b_2^2=23[/tex]

Regards.
 
  • #3
mente oscura said:
Hello.

[tex]x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S[/tex]

[tex]x^2+5y^2=10[/tex]. (p1)

[tex]yz-xk=5[/tex]. (p2)

[tex]xz+5yk= \sqrt{105}[/tex]. (p3)

[tex](x^2+5y^2)(z^2+5k^2)=10S[/tex]. (pS)

[tex]y^2z^2+x^2k^2-2xyzk=25[/tex]. Square (p2). (p4)

[tex]5y^2z^2+5x^2k^2-10xyzk=125[/tex]. (p4)*5. (p5)

[tex]x^2z^2+25y^2k^2+10xyzk=105[/tex]. Square (p3). (p6)

[tex]5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230[/tex]. (p5)+(p6). (p7)

[tex](x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230[/tex]

[tex]S=z^2+5k^2=23[/tex]

[tex]b_1^2+5b_2^2=23[/tex]

Regards.

Thanks, mente oscura for your solution and thanks for participating too!

I will share the other solution here:

Let's define

$a=a_1+i\sqrt{5}a_2$

$b=b_1-i\sqrt{5}b_2$

The first given equation where $a_1^2+5a_2^2=10$ suggests $|a|=\sqrt{10}$

Multiply $a$ by $b$ we have

$\begin{align*}ab&=(a_1+i\sqrt{5}a_2)(b_1-i\sqrt{5}b_2)\\&=a_1b_1+5a_2b_2+i\sqrt{5}(a_2b_1-a_1b_2)\\&=\sqrt{105}+i\sqrt{5}5\end{align*}$

since we are told $a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$

This yields $|ab|=\sqrt{105+125}=\sqrt{230}=\sqrt{10}\sqrt{23}$ and this implies $|b|=\sqrt{23}$ since $|a|=\sqrt{10}$.

$\therefore b_1^2+5b_2^2=|b|^2=23$
 
  • #4
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
putting $p= a_1$, $q = \sqrt{5} a_2$ ,$l= b_1$, $m = \sqrt{5} b_2$
we get $(a_1^2 + 5a_2^2)(b_1^2+5b_2)^2 = (a_1b_1 + 5a_2b_2)^2+5(a_1b_2 - a_2b_1)^2$
putting values from given conditions we get
$10(b_1^2+5b_2^2) = 105 + 5 * 5^2$
or $10(b_1^2 + 5b_2^2) = 230$
or $b_1^2 + 5b_2^2 = 23$
 
  • #5
kaliprasad said:
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
...

Thanks, Kali for your solution and I especially want to give credit to the above "identity" because I can tell that is a lifesaver if we use it sparingly and wisely, hehehe...
 

FAQ: Evaluate $b_1^2+5b_2^2$ Given $a_1^2+5a_2^2=10$

What is the value of $b_1^2+5b_2^2$?

The value of $b_1^2+5b_2^2$ cannot be determined solely from the given equation. It depends on the values of $b_1$ and $b_2$.

Can the equation $a_1^2+5a_2^2=10$ be used to find the value of $b_1^2+5b_2^2$?

No, the given equation only provides information about the values of $a_1$ and $a_2$. It cannot be used to find the value of $b_1^2+5b_2^2$ directly.

How many possible values does $b_1^2+5b_2^2$ have?

The equation $a_1^2+5a_2^2=10$ represents an ellipse in the xy-plane. The values of $b_1^2+5b_2^2$ can vary depending on the location of the point $(b_1, b_2)$ on this ellipse. Therefore, there are infinite possible values for $b_1^2+5b_2^2$.

Can $b_1^2+5b_2^2$ have a negative value?

Yes, $b_1^2+5b_2^2$ can have a negative value if the point $(b_1, b_2)$ is located inside the ellipse defined by the equation $a_1^2+5a_2^2=10$. This means that $b_1$ and $b_2$ must be imaginary numbers.

How can the value of $b_1^2+5b_2^2$ be determined?

To find the value of $b_1^2+5b_2^2$, the values of $b_1$ and $b_2$ must be known. These values can be obtained through further experimentation or by solving a system of equations with additional information.

Similar threads

Replies
1
Views
878
Replies
15
Views
20K
Replies
6
Views
2K
Replies
5
Views
2K
Replies
62
Views
3K
Replies
1
Views
1K
Replies
1
Views
873
Back
Top