- #1
bugatti79
- 794
- 1
Homework Statement
Evaluate each of the following by Cauchy's Integral formula
a)## \int_cj \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4
b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##
Homework Equations
##f(z_0)=\frac{1}{2 \pi i}\int_c \frac{f(z)}{z-z_0}##
The Attempt at a Solution
a) ## \int_{c_j} \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4
##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz =0## since ##\pi## lies outside c1 and hence ##\frac{\cos z}{z- \pi}## is analytic on and inside c1
##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz = \frac{1}{3} (2\pi i) \cos (\pi)= -\frac{2}{3} \pi i## since ##\pi## lies inside c2
b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##
##\int_c \frac{e^{3z}}{z-ln(2)} dz=2 \pi i e^{3 ln(2)}=2^4 \pi i##...?
Thanks