MHB Evaluate cos 2(theta) and sin 2(theta)

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Cos Sin
AI Thread Summary
To evaluate cos 2(theta) and sin 2(theta) for tan(theta) = -2√2, where theta is between 270 and 360 degrees, the double-angle identity for tangent is applied. The calculation leads to tan(2θ) = 4√2/7. Using the relationships for sin(2θ) and cos(2θ), it is determined that sin(2θ) = -4√2/9 and cos(2θ) = -7/9. The final answers confirm the initial calculations were correct.
Elissa89
Messages
52
Reaction score
0
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9
 
Mathematics news on Phys.org
Elissa89 said:
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9

I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$
 
MarkFL said:
I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$

Thank you! Looks like I had the right idea.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top