- #1
tg25007
- 1
- 0
8. Evaluate \(\displaystyle \int F \cdot dr\) both directly and by Green’s Theorem. The vector field and the region D is the upper half of a disk of radius a: \(\displaystyle 0 \leq x^2 + y^2 \leq a^2\) , \(\displaystyle y\) . The curve C is the boundary of D and oriented counter-clock wise.
I got an answer of 0 using the direct way:
Let x = acost, y = asint
F(t) = <a^2, asint>
F'(t) = <0, acost>
\(\displaystyle \int F \cdot dr = \int <a^2, asint> \cdot <0, acost>\)
\(\displaystyle = \int^{pi}_0 a^2sintcost dt\)
\(\displaystyle = \frac{1}{2}a^2sin^2t\)
\(\displaystyle = 0\)
For Green's Theorem, I should get the same number, but I got \(\displaystyle -\frac{4}{3}a^3\) and I have no idea where I went wrong.
\(\displaystyle \int \int (\frac{d}{dx}(y) - \frac{d}{dy}(x^2 + y^2)) dA\)
\(\displaystyle = \int \int -2y dA\)
Then I polarized the coordinates where y = rsin(theta)
\(\displaystyle \int^{\pi}_0 \int^a_0 -2rsin(\theta)r dr d(\theta)\)
\(\displaystyle = \int^{\pi}_0 -\frac{2}{3}r^3sin(\theta)\) 0 to a
\(\displaystyle = \int^{\pi}_0 -\frac{2}{3}a^3sin(\theta) d(\theta)\)
\(\displaystyle = \frac{2}{3}a^3cos(\theta) \) 0 to pi
\(\displaystyle = -\frac{4}{3}a^3\)
I got an answer of 0 using the direct way:
Let x = acost, y = asint
F(t) = <a^2, asint>
F'(t) = <0, acost>
\(\displaystyle \int F \cdot dr = \int <a^2, asint> \cdot <0, acost>\)
\(\displaystyle = \int^{pi}_0 a^2sintcost dt\)
\(\displaystyle = \frac{1}{2}a^2sin^2t\)
\(\displaystyle = 0\)
For Green's Theorem, I should get the same number, but I got \(\displaystyle -\frac{4}{3}a^3\) and I have no idea where I went wrong.
\(\displaystyle \int \int (\frac{d}{dx}(y) - \frac{d}{dy}(x^2 + y^2)) dA\)
\(\displaystyle = \int \int -2y dA\)
Then I polarized the coordinates where y = rsin(theta)
\(\displaystyle \int^{\pi}_0 \int^a_0 -2rsin(\theta)r dr d(\theta)\)
\(\displaystyle = \int^{\pi}_0 -\frac{2}{3}r^3sin(\theta)\) 0 to a
\(\displaystyle = \int^{\pi}_0 -\frac{2}{3}a^3sin(\theta) d(\theta)\)
\(\displaystyle = \frac{2}{3}a^3cos(\theta) \) 0 to pi
\(\displaystyle = -\frac{4}{3}a^3\)