- #1
joypav
- 151
- 0
I'm trying to show...
$\lim_{{x}\to{0^+}}\left(\frac{e^(\frac{-1}{x})}{x^n}\right)=0$
I guess my calculus is a bit rusty. Can someone help me out?
Here's what I've got.
$\lim_{{x}\to{0^+}}ln\left(\frac{e^(\frac{-1}{x})}{x^n}\right)=\lim_{{x}\to{0^+}}\left(-\frac{1}{x}-ln(x^n)\right)=-\infty+\infty$
So, I put it in a form to get $\frac{0}{0}$ so I can use L'Hospital's.
$\lim_{{x}\to{0^+}}\frac{x+\frac{1}{ln(x^n)}}{-\frac{x}{ln(x^n)}}$
Is this how I am supposed to be proceeding? (Wondering)